Spaces:
Runtime error
Runtime error
FlawedLLM
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -7,19 +7,28 @@ import gradio as gr
|
|
7 |
import torch
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
9 |
from huggingface_hub import login, HfFolder
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini_gemma_merged16bit_clean_final", trust_remote_code=True)
|
11 |
-
quantization_config = BitsAndBytesConfig(
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini_gemma_merged16bit_clean_final",
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# alpaca_prompt = You MUST copy from above!
|
24 |
@spaces.GPU(duration=300)
|
25 |
def chunk_it(input_command, item_list):
|
|
|
7 |
import torch
|
8 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
9 |
from huggingface_hub import login, HfFolder
|
10 |
+
# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini_gemma_merged16bit_clean_final", trust_remote_code=True)
|
11 |
+
# quantization_config = BitsAndBytesConfig(
|
12 |
+
# load_in_4bit=True,
|
13 |
+
# bnb_4bit_use_double_quant=True,
|
14 |
+
# bnb_4bit_quant_type="nf4",
|
15 |
+
# bnb_4bit_compute_dtype=torch.float16)
|
16 |
+
# model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini_gemma_merged16bit_clean_final",
|
17 |
+
# device_map="auto",
|
18 |
+
# quantization_config=quantization_config,
|
19 |
+
# torch_dtype =torch.float16,
|
20 |
+
# low_cpu_mem_usage=True,
|
21 |
+
# trust_remote_code=True)
|
22 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
23 |
+
from peft import PeftModel
|
24 |
|
25 |
+
# 1. Load Your Base Model and LoRA Adapter
|
26 |
+
model_name_or_path = "FlawedLLM/Bhashini_gemma_merged4bit_clean_final" # Hugging Face model or local path
|
27 |
+
lora_weights = "FlawedLLM/Bhashini_gemma_lora_clean_final" # LoRA weights
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
30 |
+
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=True, device_map='auto')
|
31 |
+
model = PeftModel.from_pretrained(model, lora_weights)
|
32 |
# alpaca_prompt = You MUST copy from above!
|
33 |
@spaces.GPU(duration=300)
|
34 |
def chunk_it(input_command, item_list):
|