Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,8 +11,9 @@ import soundfile as sf
|
|
11 |
from langchain_community.embeddings import OpenAIEmbeddings
|
12 |
from langchain_community.vectorstores import Chroma
|
13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
-
from langchain.chains import RetrievalQA
|
15 |
-
from langchain.agents import
|
|
|
16 |
from PIL import Image
|
17 |
from decord import VideoReader, cpu
|
18 |
from tavily import TavilyClient
|
@@ -56,7 +57,6 @@ def play_voice_output(response):
|
|
56 |
|
57 |
# NumPy Code Calculator Tool
|
58 |
def numpy_code_calculator(query):
|
59 |
-
"""Generates and executes NumPy code for mathematical operations."""
|
60 |
try:
|
61 |
llm_response = client.chat.completions.create(
|
62 |
model=MODEL,
|
@@ -77,20 +77,17 @@ def numpy_code_calculator(query):
|
|
77 |
|
78 |
# Web Search Tool
|
79 |
def web_search(query):
|
80 |
-
"""Performs a web search using Tavily."""
|
81 |
answer = tavily_client.qna_search(query=query)
|
82 |
return answer
|
83 |
|
84 |
# Image Generation Tool
|
85 |
def image_generation(query):
|
86 |
-
"""Generates an image based on the given prompt."""
|
87 |
image = image_pipe(prompt=query, num_inference_steps=20, guidance_scale=7.5).images[0]
|
88 |
image.save("output.jpg")
|
89 |
return "output.jpg"
|
90 |
|
91 |
# Document Question Answering Tool
|
92 |
def doc_question_answering(query, file_path):
|
93 |
-
"""Answers questions based on the content of a document."""
|
94 |
with open(file_path, 'r') as f:
|
95 |
file_content = f.read()
|
96 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
@@ -102,9 +99,7 @@ def doc_question_answering(query, file_path):
|
|
102 |
|
103 |
# Function to handle different input types and choose the right tool
|
104 |
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, websearch=False):
|
105 |
-
# Voice input handling
|
106 |
if audio:
|
107 |
-
# Make sure 'audio' is a file object
|
108 |
if isinstance(audio, str):
|
109 |
audio = open(audio, "rb")
|
110 |
transcription = client.audio.transcriptions.create(
|
@@ -113,7 +108,6 @@ def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, webs
|
|
113 |
)
|
114 |
user_prompt = transcription.text
|
115 |
|
116 |
-
# Initialize tools
|
117 |
tools = [
|
118 |
Tool(
|
119 |
name="Numpy Code Calculator",
|
@@ -132,7 +126,6 @@ def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, webs
|
|
132 |
),
|
133 |
]
|
134 |
|
135 |
-
# Add document Q&A tool if a document is provided
|
136 |
if doc:
|
137 |
tools.append(
|
138 |
Tool(
|
@@ -142,7 +135,6 @@ def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, webs
|
|
142 |
)
|
143 |
)
|
144 |
|
145 |
-
# Function for the agent's LLM
|
146 |
def llm_function(query):
|
147 |
response = client.chat.completions.create(
|
148 |
model=MODEL,
|
@@ -150,22 +142,15 @@ def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, webs
|
|
150 |
)
|
151 |
return response.choices[0].message.content
|
152 |
|
153 |
-
|
154 |
-
agent = ZeroShotAgent(llm_chain=LLMChain(llm=llm_function, prompt=""), tools=tools, verbose=True)
|
155 |
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
|
156 |
|
157 |
-
# Initialize agent
|
158 |
-
agent = ZeroShotAgent(llm_chain=LLMChain(llm=llm_function, prompt=None), tools=tools, verbose=True)
|
159 |
-
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
|
160 |
-
|
161 |
-
# If user uploaded an image and text, use MiniCPM model
|
162 |
if image:
|
163 |
image = Image.open(image).convert('RGB')
|
164 |
messages = [{"role": "user", "content": [image, user_prompt]}]
|
165 |
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
166 |
return response
|
167 |
|
168 |
-
# Use the agent to determine the best tool and get the response
|
169 |
if websearch:
|
170 |
response = agent_executor.run(f"{user_prompt} Use the Web Search tool if necessary.")
|
171 |
else:
|
@@ -198,7 +183,6 @@ def create_ui():
|
|
198 |
outputs=[output_label, audio_output]
|
199 |
)
|
200 |
|
201 |
-
# Voice-only mode UI
|
202 |
voice_only_mode.change(
|
203 |
lambda x: gr.update(visible=not x),
|
204 |
inputs=voice_only_mode,
|
@@ -230,4 +214,4 @@ def main_interface(user_prompt, image=None, audio=None, doc=None, voice_only=Fal
|
|
230 |
|
231 |
# Launch the app
|
232 |
demo = create_ui()
|
233 |
-
demo.launch(inline=False)
|
|
|
11 |
from langchain_community.embeddings import OpenAIEmbeddings
|
12 |
from langchain_community.vectorstores import Chroma
|
13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
+
from langchain.chains import RetrievalQA
|
15 |
+
from langchain.agents import AgentExecutor, Tool
|
16 |
+
from langchain.schema import RunnableSequence
|
17 |
from PIL import Image
|
18 |
from decord import VideoReader, cpu
|
19 |
from tavily import TavilyClient
|
|
|
57 |
|
58 |
# NumPy Code Calculator Tool
|
59 |
def numpy_code_calculator(query):
|
|
|
60 |
try:
|
61 |
llm_response = client.chat.completions.create(
|
62 |
model=MODEL,
|
|
|
77 |
|
78 |
# Web Search Tool
|
79 |
def web_search(query):
|
|
|
80 |
answer = tavily_client.qna_search(query=query)
|
81 |
return answer
|
82 |
|
83 |
# Image Generation Tool
|
84 |
def image_generation(query):
|
|
|
85 |
image = image_pipe(prompt=query, num_inference_steps=20, guidance_scale=7.5).images[0]
|
86 |
image.save("output.jpg")
|
87 |
return "output.jpg"
|
88 |
|
89 |
# Document Question Answering Tool
|
90 |
def doc_question_answering(query, file_path):
|
|
|
91 |
with open(file_path, 'r') as f:
|
92 |
file_content = f.read()
|
93 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
|
|
99 |
|
100 |
# Function to handle different input types and choose the right tool
|
101 |
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, websearch=False):
|
|
|
102 |
if audio:
|
|
|
103 |
if isinstance(audio, str):
|
104 |
audio = open(audio, "rb")
|
105 |
transcription = client.audio.transcriptions.create(
|
|
|
108 |
)
|
109 |
user_prompt = transcription.text
|
110 |
|
|
|
111 |
tools = [
|
112 |
Tool(
|
113 |
name="Numpy Code Calculator",
|
|
|
126 |
),
|
127 |
]
|
128 |
|
|
|
129 |
if doc:
|
130 |
tools.append(
|
131 |
Tool(
|
|
|
135 |
)
|
136 |
)
|
137 |
|
|
|
138 |
def llm_function(query):
|
139 |
response = client.chat.completions.create(
|
140 |
model=MODEL,
|
|
|
142 |
)
|
143 |
return response.choices[0].message.content
|
144 |
|
145 |
+
agent = ZeroShotAgent(llm_chain=RunnableSequence(prompt="", llm=llm_function), tools=tools, verbose=True)
|
|
|
146 |
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
|
147 |
|
|
|
|
|
|
|
|
|
|
|
148 |
if image:
|
149 |
image = Image.open(image).convert('RGB')
|
150 |
messages = [{"role": "user", "content": [image, user_prompt]}]
|
151 |
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
152 |
return response
|
153 |
|
|
|
154 |
if websearch:
|
155 |
response = agent_executor.run(f"{user_prompt} Use the Web Search tool if necessary.")
|
156 |
else:
|
|
|
183 |
outputs=[output_label, audio_output]
|
184 |
)
|
185 |
|
|
|
186 |
voice_only_mode.change(
|
187 |
lambda x: gr.update(visible=not x),
|
188 |
inputs=voice_only_mode,
|
|
|
214 |
|
215 |
# Launch the app
|
216 |
demo = create_ui()
|
217 |
+
demo.launch(inline=False)
|