VanguardAI commited on
Commit
5f52293
·
verified ·
1 Parent(s): 3641d19

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -63
app.py CHANGED
@@ -1,18 +1,27 @@
1
  import torch
2
- import spaces
3
- from unsloth import FastLanguageModel
4
- model, tokenizer = FastLanguageModel.from_pretrained(
5
- model_name = "VanguardAI/BhashiniLLaMa3-8B_LoRA_Adapters",
6
- max_seq_length = 2048,
7
- dtype = None,
8
- load_in_4bit = True,)
9
- FastLanguageModel.for_inference(model)
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  condition= '''
13
  ALWAYS provide output in a JSON format.
14
  '''
15
-
16
  alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
17
 
18
  ### Instruction:
@@ -24,59 +33,58 @@ alpaca_prompt = """Below is an instruction that describes a task, paired with an
24
  ### Response:
25
  {}"""
26
 
27
-
28
  @spaces.GPU(duration=300)
29
- def chunk_it(inventory_list,user_input_text):
30
  inputs = tokenizer(
31
- [
32
- alpaca_prompt.format(
33
- '''
34
- You will receive text input that you need to analyze to perform the following tasks:
35
-
36
- transaction: Record the details of an item transaction.
37
- last n days transactions: Retrieve transaction records for a specified time period.
38
- view risk inventory: View inventory items based on a risk category.
39
- view inventory: View inventory details.
40
- new items: Add new items to the inventory.
41
- report generation: Generate various inventory reports.
42
- delete item: Delete an existing Item.
43
-
44
- Required Parameters:
45
- Each task requires specific parameters to execute correctly:
46
-
47
- transaction:
48
- ItemName (string)
49
- ItemQt (quantity - integer)
50
- Type (string: "sale" or "purchase" or "return")
51
- ReorderPoint (integer)
52
- last n days transactions:
53
- ItemName (string)
54
- Duration (integer: number of days, if user input is in weeks, months or years then convert to days)
55
- view risk inventory:
56
- RiskType (string: "overstock", "understock", or "Null" for all risk types)
57
- view inventory:
58
- ItemName (string)
59
- new items:
60
- ItemName (string)
61
- SellingPrice (number)
62
- CostPrice (number)
63
- report generation:
64
- ItemName (string)
65
- Duration (integer: number of days, if user input is in weeks, months or years then convert to days )
66
- ReportType (string: "profit", "revenue", "inventory", or "Null" for all reports)
67
-
68
- The ItemName must always be matched from the below list of names, EXCEPT for when the Function is "new items".
69
- '''+ inventory_list +
70
- '''
71
- ALWAYS provide output in a JSON format.
72
- ''', # instruction
73
- user_input_text, # input
74
- "", # output - leave this blank for generation!
75
- )
76
- ], return_tensors = "pt").to("cuda")
77
- outputs = model.generate(**inputs, max_new_tokens = 216, use_cache = True)
78
- content= tokenizer.batch_decode(outputs)
79
- return content
80
 
81
 
82
  iface=gr.Interface(fn=chunk_it,
@@ -88,9 +96,9 @@ iface = gr.Interface(
88
  fn=chunk_it,
89
  inputs=[
90
  gr.Textbox(label="user_input_text", lines=3),
91
- gr.Textbox(label="inventory_list", lines=3)
92
  ],
93
  outputs="text",
94
- title="SomeModel",
95
  )
96
- iface.launch(inline=False)
 
1
  import torch
2
+ from transformers import LlamaForCausalLM, LlamaTokenizer, LoraModel, LoraConfig, PeftModel
3
+ import gradio as gr
 
 
 
 
 
 
4
 
5
+ # Load tokenizer
6
+ tokenizer = LlamaTokenizer.from_pretrained("VanguardAI/BhashiniLLaMa3-8B_LoRA_Adapters")
7
+
8
+ # Load base model
9
+ base_model = LlamaForCausalLM.from_pretrained("unsloth/llama-3-8b-Instruct-bnb-4bit")
10
+
11
+ # Apply LoRA adapters
12
+ lora_config = LoraConfig(
13
+ r=16,
14
+ lora_alpha=16,
15
+ target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",],
16
+ lora_dropout=0,
17
+ bias="none",
18
+ task_type="CAUSAL_LM"
19
+ )
20
+ model = PeftModel.from_pretrained(base_model, "VanguardAI/BhashiniLLaMa3-8B_LoRA_Adapters", config=lora_config)
21
 
22
  condition= '''
23
  ALWAYS provide output in a JSON format.
24
  '''
 
25
  alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
26
 
27
  ### Instruction:
 
33
  ### Response:
34
  {}"""
35
 
 
36
  @spaces.GPU(duration=300)
37
+ def chunk_it(inventory_list, user_input_text):
38
  inputs = tokenizer(
39
+ [
40
+ alpaca_prompt.format(
41
+ '''
42
+ You will receive text input that you need to analyze to perform the following tasks:
43
+
44
+ transaction: Record the details of an item transaction.
45
+ last n days transactions: Retrieve transaction records for a specified time period.
46
+ view risk inventory: View inventory items based on a risk category.
47
+ view inventory: View inventory details.
48
+ new items: Add new items to the inventory.
49
+ report generation: Generate various inventory reports.
50
+ delete item: Delete an existing Item.
51
+
52
+ Required Parameters:
53
+ Each task requires specific parameters to execute correctly:
54
+
55
+ transaction:
56
+ ItemName (string)
57
+ ItemQt (quantity - integer)
58
+ Type (string: "sale" or "purchase" or "return")
59
+ ReorderPoint (integer)
60
+ last n days transactions:
61
+ ItemName (string)
62
+ Duration (integer: number of days, if user input is in weeks, months or years then convert to days)
63
+ view risk inventory:
64
+ RiskType (string: "overstock", "understock", or "Null" for all risk types)
65
+ view inventory:
66
+ ItemName (string)
67
+ new items:
68
+ ItemName (string)
69
+ SellingPrice (number)
70
+ CostPrice (number)
71
+ report generation:
72
+ ItemName (string)
73
+ Duration (integer: number of days, if user input is in weeks, months or years then convert to days)
74
+ ReportType (string: "profit", "revenue", "inventory", or "Null" for all reports)
75
+
76
+ The ItemName must always be matched from the below list of names, EXCEPT for when the Function is "new items".
77
+ ''' + inventory_list +
78
+ '''
79
+ ALWAYS provide output in a JSON format.
80
+ ''', # instruction
81
+ user_input_text, # input
82
+ "", # output - leave this blank for generation!
83
+ )
84
+ ], return_tensors="pt").to("cuda")
85
+ outputs = model.generate(**inputs, max_new_tokens=216, use_cache=True)
86
+ content = tokenizer.batch_decode(outputs, skip_special_tokens=True)
87
+ return content[0]
88
 
89
 
90
  iface=gr.Interface(fn=chunk_it,
 
96
  fn=chunk_it,
97
  inputs=[
98
  gr.Textbox(label="user_input_text", lines=3),
99
+ gr.Textbox(label="inventory_list", lines=5)
100
  ],
101
  outputs="text",
102
+ title="Formatter Pro",
103
  )
104
+ iface.launch(inline=False)