Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,9 +4,21 @@ import re
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import gradio as gr
|
6 |
import os
|
7 |
-
|
8 |
from unsloth import FastLanguageModel
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
11 |
|
12 |
### Instruction:
|
@@ -65,43 +77,63 @@ Category List : ["Dairy & Eggs", "Beverages & Snacks", "Cleaning & Hygiene", "Gr
|
|
65 |
|
66 |
@spaces.GPU()
|
67 |
def chunk_it(inventory_list, user_input_text):
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
formatted_prompt = alpaca_prompt.format(
|
83 |
string + inventory_list, # instruction
|
84 |
user_input_text, # input
|
85 |
"", # output - leave this blank for generation!
|
86 |
)
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
# Uncomment the following lines if further processing of the reply is needed
|
100 |
# pattern = r"### Response:\n(.*?)<\|end_of_text\|>"
|
101 |
# match = re.search(pattern, reply[0], re.DOTALL)
|
102 |
# reply = match.group(1).strip()
|
103 |
|
104 |
-
|
105 |
return reply
|
106 |
|
107 |
# Interface for inputs
|
@@ -115,6 +147,9 @@ iface = gr.Interface(
|
|
115 |
title="Testing",
|
116 |
)
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
import gradio as gr
|
6 |
import os
|
7 |
+
import logging
|
8 |
from unsloth import FastLanguageModel
|
9 |
|
10 |
+
# Set up logging
|
11 |
+
logging.basicConfig(
|
12 |
+
level=logging.DEBUG, # Set the logging level to DEBUG to capture all messages
|
13 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
14 |
+
handlers=[
|
15 |
+
logging.StreamHandler() # Logs will be output to the console
|
16 |
+
]
|
17 |
+
)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
+
READ_HF = os.environ["read_hf"]
|
21 |
+
|
22 |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
23 |
|
24 |
### Instruction:
|
|
|
77 |
|
78 |
@spaces.GPU()
|
79 |
def chunk_it(inventory_list, user_input_text):
|
80 |
+
logger.info("Loading model and tokenizer...")
|
81 |
+
try:
|
82 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
83 |
+
model_name = "VanguardAI/CoT_multi_llama_LoRA_4bit",
|
84 |
+
max_seq_length = 2048,
|
85 |
+
dtype = torch.bfloat16,
|
86 |
+
load_in_4bit = True,
|
87 |
+
token = READ_HF
|
88 |
+
)
|
89 |
+
logger.info("Model and tokenizer loaded.")
|
90 |
+
except Exception as e:
|
91 |
+
logger.error(f"Failed to load model and tokenizer: {e}")
|
92 |
+
raise
|
93 |
+
|
94 |
+
logger.info("Enabling native 2x faster inference...")
|
95 |
+
try:
|
96 |
+
FastLanguageModel.for_inference(model)
|
97 |
+
logger.info("Inference enabled.")
|
98 |
+
except Exception as e:
|
99 |
+
logger.error(f"Failed to enable native inference: {e}")
|
100 |
+
raise
|
101 |
|
102 |
formatted_prompt = alpaca_prompt.format(
|
103 |
string + inventory_list, # instruction
|
104 |
user_input_text, # input
|
105 |
"", # output - leave this blank for generation!
|
106 |
)
|
107 |
+
logger.debug(f"Formatted prompt: {formatted_prompt}")
|
108 |
+
|
109 |
+
try:
|
110 |
+
inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda")
|
111 |
+
logger.debug(f"Tokenized inputs: {inputs}")
|
112 |
+
except Exception as e:
|
113 |
+
logger.error(f"Failed to tokenize inputs: {e}")
|
114 |
+
raise
|
115 |
+
|
116 |
+
logger.info("Generating output...")
|
117 |
+
try:
|
118 |
+
outputs = model.generate(**inputs, max_new_tokens=216, use_cache=True)
|
119 |
+
logger.info("Output generated.")
|
120 |
+
except Exception as e:
|
121 |
+
logger.error(f"Failed to generate output: {e}")
|
122 |
+
raise
|
123 |
+
|
124 |
+
try:
|
125 |
+
reply = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
126 |
+
logger.debug(f"Decoded output: {reply}")
|
127 |
+
except Exception as e:
|
128 |
+
logger.error(f"Failed to decode output: {e}")
|
129 |
+
raise
|
130 |
|
131 |
# Uncomment the following lines if further processing of the reply is needed
|
132 |
# pattern = r"### Response:\n(.*?)<\|end_of_text\|>"
|
133 |
# match = re.search(pattern, reply[0], re.DOTALL)
|
134 |
# reply = match.group(1).strip()
|
135 |
|
136 |
+
logger.debug(f"Final reply: {reply}")
|
137 |
return reply
|
138 |
|
139 |
# Interface for inputs
|
|
|
147 |
title="Testing",
|
148 |
)
|
149 |
|
150 |
+
logger.info("Launching Gradio interface...")
|
151 |
+
try:
|
152 |
+
iface.launch(inline=False)
|
153 |
+
logger.info("Gradio interface launched.")
|
154 |
+
except Exception as e:
|
155 |
+
logger.error(f"Failed to launch Gradio interface: {e}")
|