Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from transformers import AutoModel, AutoTokenizer
|
|
8 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
10 |
import soundfile as sf
|
11 |
-
from llama_index import
|
12 |
from llama_index.embeddings import GroqEmbedding
|
13 |
from llama_index.llms import GroqLLM
|
14 |
from llama_index.agent import ReActAgent
|
@@ -100,7 +100,7 @@ def doc_question_answering(query, file_path):
|
|
100 |
prompt_helper = PromptHelper()
|
101 |
|
102 |
# Create index
|
103 |
-
index =
|
104 |
documents,
|
105 |
embed_model=embed_model,
|
106 |
llm_predictor=llm_predictor,
|
|
|
8 |
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
|
9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
10 |
import soundfile as sf
|
11 |
+
from llama_index import VectorStoreIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper
|
12 |
from llama_index.embeddings import GroqEmbedding
|
13 |
from llama_index.llms import GroqLLM
|
14 |
from llama_index.agent import ReActAgent
|
|
|
100 |
prompt_helper = PromptHelper()
|
101 |
|
102 |
# Create index
|
103 |
+
index = VectorStoreIndex.from_documents(
|
104 |
documents,
|
105 |
embed_model=embed_model,
|
106 |
llm_predictor=llm_predictor,
|