Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,10 +8,7 @@ from transformers import AutoModel, AutoTokenizer
|
|
8 |
from diffusers import StableDiffusion3Pipeline
|
9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
10 |
import soundfile as sf
|
11 |
-
from langchain.agents import AgentExecutor, create_react_agent
|
12 |
-
from langchain.tools import BaseTool
|
13 |
-
from langchain_groq import ChatGroq
|
14 |
-
from langchain.agents import AgentExecutor, initialize_agent, Tool
|
15 |
from langchain.agents import AgentType
|
16 |
from langchain_groq import ChatGroq
|
17 |
from langchain.prompts import PromptTemplate
|
@@ -56,9 +53,9 @@ def play_voice_output(response):
|
|
56 |
return "output.wav"
|
57 |
|
58 |
# NumPy Code Calculator Tool
|
59 |
-
class NumpyCodeCalculator(
|
60 |
name = "Numpy"
|
61 |
-
description = "Useful for performing
|
62 |
|
63 |
def _run(self, query: str) -> str:
|
64 |
try:
|
@@ -70,16 +67,16 @@ class NumpyCodeCalculator(BaseTool):
|
|
70 |
return f"Error: {e}"
|
71 |
|
72 |
# Web Search Tool
|
73 |
-
class WebSearch(
|
74 |
name = "Web"
|
75 |
-
description = "Useful for searching
|
76 |
|
77 |
def _run(self, query: str) -> str:
|
78 |
answer = tavily_client.qna_search(query=query)
|
79 |
return answer
|
80 |
|
81 |
# Image Generation Tool
|
82 |
-
class ImageGeneration(
|
83 |
name = "Image"
|
84 |
description = "Useful for generating images based on text descriptions"
|
85 |
|
@@ -94,7 +91,7 @@ class ImageGeneration(BaseTool):
|
|
94 |
return "output.jpg"
|
95 |
|
96 |
# Document Question Answering Tool
|
97 |
-
class DocumentQuestionAnswering(
|
98 |
name = "Document"
|
99 |
description = "Useful for answering questions about a specific document"
|
100 |
|
@@ -122,8 +119,8 @@ class DocumentQuestionAnswering(BaseTool):
|
|
122 |
response = self.qa_chain.run(query)
|
123 |
return str(response)
|
124 |
|
125 |
-
class DuckDuckGoSearchRun(
|
126 |
-
name = "
|
127 |
description = "Useful for searching the internet for general information"
|
128 |
|
129 |
def _run(self, query: str) -> str:
|
@@ -136,75 +133,52 @@ class DuckDuckGoSearchRun(BaseTool):
|
|
136 |
data = response.json()
|
137 |
answer = data["Abstract"]
|
138 |
return answer
|
139 |
-
|
140 |
-
# Function to handle different input types and choose the right tool
|
141 |
# Function to handle different input types and choose the right tool
|
142 |
-
def handle_input(user_prompt, image=None, audio=None, websearch=False, document=None):
|
143 |
-
# Initialize the
|
144 |
-
|
145 |
|
|
|
146 |
tools = [
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
description="Useful for searching the internet for general information"
|
151 |
-
),
|
152 |
-
Tool(
|
153 |
-
name="Image",
|
154 |
-
func=ImageGeneration()._run,
|
155 |
-
description="Useful for generating images based on text descriptions"
|
156 |
-
),
|
157 |
]
|
158 |
|
159 |
-
# Add the numpy tool, but with a more specific description
|
160 |
-
tools.append(Tool(
|
161 |
-
name="Numpy",
|
162 |
-
func=NumpyCodeCalculator()._run,
|
163 |
-
description="Useful only for performing numerical computations, not for general searches"
|
164 |
-
))
|
165 |
-
|
166 |
# Add the web search tool only if websearch mode is enabled
|
167 |
if websearch:
|
168 |
-
tools.append(
|
169 |
-
name="Web",
|
170 |
-
func=WebSearch()._run,
|
171 |
-
description="Useful for advanced web searching beyond general information"
|
172 |
-
))
|
173 |
|
174 |
# Add the document question answering tool only if a document is provided
|
175 |
if document:
|
176 |
-
tools.append(
|
177 |
-
name="Document",
|
178 |
-
func=DocumentQuestionAnswering(document)._run,
|
179 |
-
description="Useful for answering questions about a specific document"
|
180 |
-
))
|
181 |
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
# Check if the input requires any tools
|
185 |
-
requires_tool =
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
break
|
190 |
-
|
191 |
-
if image or audio or requires_tool:
|
192 |
-
# Initialize the agent
|
193 |
agent = initialize_agent(
|
194 |
tools,
|
195 |
llm,
|
196 |
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
197 |
verbose=True
|
198 |
)
|
199 |
-
|
200 |
-
if image:
|
201 |
-
image = Image.open(image).convert('RGB')
|
202 |
-
messages = [{"role": "user", "content": [image, user_prompt]}]
|
203 |
-
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
204 |
-
else:
|
205 |
-
response = agent.run(user_prompt)
|
206 |
else:
|
207 |
-
# If no tools are required, use the LLM directly
|
208 |
response = llm.call(query=user_prompt)
|
209 |
|
210 |
return response
|
@@ -420,7 +394,6 @@ def create_ui():
|
|
420 |
|
421 |
return demo
|
422 |
|
423 |
-
# Main interface function
|
424 |
@spaces.GPU(duration=180)
|
425 |
def main_interface(user_prompt, image=None, audio=None, voice_only=False, websearch=False, document=None):
|
426 |
print("Starting main_interface function")
|
@@ -431,7 +404,7 @@ def main_interface(user_prompt, image=None, audio=None, voice_only=False, websea
|
|
431 |
print(f"user_prompt: {user_prompt}, image: {image}, audio: {audio}, voice_only: {voice_only}, websearch: {websearch}, document: {document}")
|
432 |
|
433 |
try:
|
434 |
-
response = handle_input(user_prompt, image=image, audio=audio, websearch=websearch, document=document)
|
435 |
print("handle_input function executed successfully")
|
436 |
except Exception as e:
|
437 |
print(f"Error in handle_input: {e}")
|
|
|
8 |
from diffusers import StableDiffusion3Pipeline
|
9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
10 |
import soundfile as sf
|
11 |
+
from langchain.agents import AgentExecutor, create_react_agent, initialize_agent, Tool
|
|
|
|
|
|
|
12 |
from langchain.agents import AgentType
|
13 |
from langchain_groq import ChatGroq
|
14 |
from langchain.prompts import PromptTemplate
|
|
|
53 |
return "output.wav"
|
54 |
|
55 |
# NumPy Code Calculator Tool
|
56 |
+
class NumpyCodeCalculator(Tool):
|
57 |
name = "Numpy"
|
58 |
+
description = "Useful only for performing numerical computations, not for general searches"
|
59 |
|
60 |
def _run(self, query: str) -> str:
|
61 |
try:
|
|
|
67 |
return f"Error: {e}"
|
68 |
|
69 |
# Web Search Tool
|
70 |
+
class WebSearch(Tool):
|
71 |
name = "Web"
|
72 |
+
description = "Useful for advanced web searching beyond general information"
|
73 |
|
74 |
def _run(self, query: str) -> str:
|
75 |
answer = tavily_client.qna_search(query=query)
|
76 |
return answer
|
77 |
|
78 |
# Image Generation Tool
|
79 |
+
class ImageGeneration(Tool):
|
80 |
name = "Image"
|
81 |
description = "Useful for generating images based on text descriptions"
|
82 |
|
|
|
91 |
return "output.jpg"
|
92 |
|
93 |
# Document Question Answering Tool
|
94 |
+
class DocumentQuestionAnswering(Tool):
|
95 |
name = "Document"
|
96 |
description = "Useful for answering questions about a specific document"
|
97 |
|
|
|
119 |
response = self.qa_chain.run(query)
|
120 |
return str(response)
|
121 |
|
122 |
+
class DuckDuckGoSearchRun(Tool):
|
123 |
+
name = "Search"
|
124 |
description = "Useful for searching the internet for general information"
|
125 |
|
126 |
def _run(self, query: str) -> str:
|
|
|
133 |
data = response.json()
|
134 |
answer = data["Abstract"]
|
135 |
return answer
|
136 |
+
|
|
|
137 |
# Function to handle different input types and choose the right tool
|
138 |
+
def handle_input(user_prompt, image=None, audio=None, voice_only=False, websearch=False, document=None):
|
139 |
+
# Initialize the LLM
|
140 |
+
llm = ChatGroq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))
|
141 |
|
142 |
+
# Initialize tools
|
143 |
tools = [
|
144 |
+
DuckDuckGoSearchRun(),
|
145 |
+
ImageGeneration(),
|
146 |
+
NumpyCodeCalculator(),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
]
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
# Add the web search tool only if websearch mode is enabled
|
150 |
if websearch:
|
151 |
+
tools.append(WebSearch())
|
|
|
|
|
|
|
|
|
152 |
|
153 |
# Add the document question answering tool only if a document is provided
|
154 |
if document:
|
155 |
+
tools.append(DocumentQuestionAnswering(document))
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
# Handle voice input
|
158 |
+
if voice_only and audio:
|
159 |
+
# TODO: Implement Whisper integration for voice-to-text
|
160 |
+
user_prompt = "Whisper transcription of audio" # Replace with actual transcription
|
161 |
+
|
162 |
+
# Handle image and text input
|
163 |
+
if image and user_prompt:
|
164 |
+
image = Image.open(image).convert('RGB')
|
165 |
+
messages = [{"role": "user", "content": [image, user_prompt]}]
|
166 |
+
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
167 |
+
return response
|
168 |
|
169 |
# Check if the input requires any tools
|
170 |
+
requires_tool = any(tool.name.lower() in user_prompt.lower() for tool in tools)
|
171 |
+
|
172 |
+
# Use agent if tools are required, otherwise use LLM directly
|
173 |
+
if requires_tool:
|
|
|
|
|
|
|
|
|
174 |
agent = initialize_agent(
|
175 |
tools,
|
176 |
llm,
|
177 |
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
178 |
verbose=True
|
179 |
)
|
180 |
+
response = agent.run(user_prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
else:
|
|
|
182 |
response = llm.call(query=user_prompt)
|
183 |
|
184 |
return response
|
|
|
394 |
|
395 |
return demo
|
396 |
|
|
|
397 |
@spaces.GPU(duration=180)
|
398 |
def main_interface(user_prompt, image=None, audio=None, voice_only=False, websearch=False, document=None):
|
399 |
print("Starting main_interface function")
|
|
|
404 |
print(f"user_prompt: {user_prompt}, image: {image}, audio: {audio}, voice_only: {voice_only}, websearch: {websearch}, document: {document}")
|
405 |
|
406 |
try:
|
407 |
+
response = handle_input(user_prompt, image=image, audio=audio, voice_only=voice_only, websearch=websearch, document=document)
|
408 |
print("handle_input function executed successfully")
|
409 |
except Exception as e:
|
410 |
print(f"Error in handle_input: {e}")
|