File size: 4,939 Bytes
63e68a4
 
 
 
 
 
 
 
a504543
63e68a4
 
 
 
 
 
 
 
 
 
 
 
 
 
a504543
63e68a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr
from PIL import Image 
from transformers import AutoModelForCausalLM 
from transformers import AutoProcessor 
from transformers import TextIteratorStreamer
import time
from threading import Thread
import torch
import spaces

model_id = "microsoft/Phi-3-vision-128k-instruct" 
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto")
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) 
model.to("cuda:0")

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://cdn-thumbnails.huggingface.co/social-thumbnails/models/microsoft/Phi-3-vision-128k-instruct.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;  "> 
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Microsoft's Phi3-Vision-128k-Context</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Phi-3-Vision is a 4.2B parameter multimodal model that brings together language and vision capabilities.</p>
</div>
"""

@spaces.GPU
def bot_streaming(message, history):
    print(f'message is - {message}')
    print(f'history is - {history}')
    if message["files"]:
        # message["files"][-1] is a Dict or just a string
        if type(message["files"][-1]) == dict:
            image = message["files"][-1]["path"]
        else:
            image = message["files"][-1]
    else:
        # if there's no image uploaded for this turn, look for images in the past turns
        # kept inside tuples, take the last one
        for hist in history:
            if type(hist[0]) == tuple:
                image = hist[0][0]
    try:
        if image is None:
            # Handle the case where image is None
            raise gr.Error("You need to upload an image for FalconVLM to work. Close the error and try again with an Image.")
    except NameError:
        # Handle the case where 'image' is not defined at all
        raise gr.Error("You need to upload an image for FalconVLM to work. Close the error and try again with an Image.")

    conversation = []
    flag=False
    for user, assistant in history:
        if assistant is None:
            #pass
            flag=True
            conversation.extend([{"role": "user", "content":""}])
            continue
        if flag==True:
            conversation[0]['content'] = f"<|image_1|>\n{user}"   
            conversation.extend([{"role": "assistant", "content": assistant}])
            flag=False
            continue
        #conversation += f"""User:<image>\n{user} Falcon:{assistant} """
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])

    if len(history) == 0:
        conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
    else:
        conversation.append({"role": "user", "content": message['text']})
    print(f"prompt is -\n{conversation}")
    #prompt = f"""User:<image>\n{message['text']} Falcon:"""
    prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    image = Image.open(image)
    inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") 
    #inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)

    streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,}) # "eos_token_id":processor.tokenizer.eos_token_id})
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False, temperature=0.0, eos_token_id=processor.tokenizer.eos_token_id,)

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        # find <|eot_id|> and remove it from the new_text
        #if "<|eot_id|>" in new_text:
        #    new_text = new_text.split("<|eot_id|>")[0]
        buffer += new_text
        yield buffer


chatbot=gr.Chatbot(scale=1, placeholder=PLACEHOLDER)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
with gr.Blocks(fill_height=True, ) as demo:
    gr.ChatInterface(
    fn=bot_streaming,
    title="FalconVLM",
    examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
              {"text": "How to make this pastry?", "files": ["./baklava.png"]}],
    description="Try [tiiuae/falcon-11B-VLM](https://huggingface.co/tiiuae/falcon-11B-vlm). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
    stop_btn="Stop Generation",
    multimodal=True,
    textbox=chat_input,
    chatbot=chatbot,
    cache_examples=False,
    )

demo.queue()
demo.launch(debug=True, quiet=True)