Spaces:
Build error
Build error
FlawedLLM
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -16,23 +16,6 @@ model_id = "microsoft/Phi-3-vision-128k-instruct"
|
|
16 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, torch_dtype="auto")
|
17 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
18 |
|
19 |
-
from PIL import Image
|
20 |
-
import base64
|
21 |
-
import zlib
|
22 |
-
from io import BytesIO
|
23 |
-
|
24 |
-
def decode_and_decompress_image(base64_string):
|
25 |
-
# Decode the Base64 string to bytes
|
26 |
-
compressed_data = base64.b64decode(base64_string.encode('utf-8'))
|
27 |
-
|
28 |
-
# Decompress the data using zlib
|
29 |
-
img_bytes = zlib.decompress(compressed_data)
|
30 |
-
|
31 |
-
# Open the image from bytes
|
32 |
-
img_buffer = BytesIO(img_bytes)
|
33 |
-
image = Image.open(img_buffer)
|
34 |
-
|
35 |
-
return image
|
36 |
|
37 |
PLACEHOLDER = """
|
38 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
@@ -87,8 +70,7 @@ def bot_streaming(message, history):
|
|
87 |
conversation.append({"role": "user", "content": message['text']})
|
88 |
print(f"prompt is -\n{conversation}")
|
89 |
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
90 |
-
|
91 |
-
image = decode_and_decompress_image(image)
|
92 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
93 |
|
94 |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
|
|
|
16 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", trust_remote_code=True, torch_dtype="auto")
|
17 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
PLACEHOLDER = """
|
21 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
|
|
70 |
conversation.append({"role": "user", "content": message['text']})
|
71 |
print(f"prompt is -\n{conversation}")
|
72 |
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
73 |
+
image = Image.open(image)
|
|
|
74 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
75 |
|
76 |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
|