Spaces:
Build error
Build error
VanguardAI
commited on
Commit
•
625d84b
1
Parent(s):
cab275d
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,27 @@
|
|
1 |
-
import
|
2 |
import torch
|
3 |
-
import
|
4 |
-
from transformers import
|
5 |
from datasets import load_dataset
|
6 |
-
from openvoice.api import ToneColorConverter
|
7 |
from openvoice import se_extractor
|
8 |
-
from
|
9 |
-
import
|
10 |
-
import
|
11 |
-
import numpy as np
|
12 |
|
13 |
-
#
|
14 |
torch_dtype = torch.float16
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
21 |
"automatic-speech-recognition",
|
22 |
-
model=
|
23 |
-
tokenizer=
|
24 |
-
feature_extractor=
|
25 |
max_new_tokens=128,
|
26 |
chunk_length_s=30,
|
27 |
batch_size=16,
|
@@ -30,77 +30,64 @@ asr_pipeline = pipeline(
|
|
30 |
device=device,
|
31 |
)
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
# Load TTS model and vocoder
|
39 |
-
tts_converter_ckpt = 'checkpoints_v2/converter'
|
40 |
-
tts_output_dir = 'outputs_v2'
|
41 |
-
os.makedirs(tts_output_dir, exist_ok=True)
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
asr_result = asr_pipeline(input_audio)["text"]
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
generated_ids = text_model.generate(input_ids, max_length=512)
|
56 |
-
response_text = text_tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
-
source_se = torch.load(f'checkpoints_v2/base_speakers/ses/english-american.pth', map_location=device)
|
65 |
-
tts_converter.convert(audio_src_path=f'{tts_output_dir}/tmp.wav', src_se=source_se, tgt_se=target_se, output_path=save_path, message="@MyShell")
|
66 |
-
|
67 |
return save_path
|
68 |
-
|
69 |
-
# Real-time audio processing
|
70 |
-
|
71 |
-
def real_time_audio_processing():
|
72 |
-
p = pyaudio.PyAudio()
|
73 |
-
stream = p.open(format=pyaudio.paInt16, channels=1, rate=16000, input=True, frames_per_buffer=1024)
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
while True:
|
79 |
-
data = stream.read(1024)
|
80 |
-
frames.append(data)
|
81 |
-
audio_data = np.frombuffer(data, dtype=np.int16)
|
82 |
-
if np.max(audio_data) > 3000: # Simple VAD threshold
|
83 |
-
wf = wave.open("input_audio.wav", 'wb')
|
84 |
-
wf.setnchannels(1)
|
85 |
-
wf.setsampwidth(p.get_sample_size(pyaudio.paInt16))
|
86 |
-
wf.setframerate(16000)
|
87 |
-
wf.writeframes(b''.join(frames))
|
88 |
-
wf.close()
|
89 |
-
return "input_audio.wav"
|
90 |
-
|
91 |
-
# Gradio Interface
|
92 |
-
@spaces.GPU(duration=300)
|
93 |
-
def main():
|
94 |
-
input_audio_path = real_time_audio_processing()
|
95 |
-
if input_audio_path:
|
96 |
-
output_audio_path = process_audio(input_audio_path)
|
97 |
-
return output_audio_path
|
98 |
|
|
|
99 |
iface = gr.Interface(
|
100 |
-
fn=
|
101 |
-
inputs=
|
102 |
-
outputs=gr.Audio(type="
|
103 |
-
live=True
|
|
|
|
|
104 |
)
|
105 |
|
106 |
-
|
|
|
|
1 |
+
import os
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
4 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer
|
5 |
from datasets import load_dataset
|
|
|
6 |
from openvoice import se_extractor
|
7 |
+
from openvoice.api import BaseSpeakerTTS, ToneColorConverter
|
8 |
+
import gradio as gr
|
9 |
+
import spaces
|
|
|
10 |
|
11 |
+
# Device setup
|
12 |
torch_dtype = torch.float16
|
13 |
|
14 |
+
# Whisper setup
|
15 |
+
whisper_model_id = "openai/whisper-large-v3"
|
16 |
+
whisper_model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
17 |
+
whisper_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
18 |
+
)
|
19 |
+
whisper_processor = AutoProcessor.from_pretrained(whisper_model_id)
|
20 |
+
whisper_pipe = pipeline(
|
21 |
"automatic-speech-recognition",
|
22 |
+
model=whisper_model,
|
23 |
+
tokenizer=whisper_processor.tokenizer,
|
24 |
+
feature_extractor=whisper_processor.feature_extractor,
|
25 |
max_new_tokens=128,
|
26 |
chunk_length_s=30,
|
27 |
batch_size=16,
|
|
|
30 |
device=device,
|
31 |
)
|
32 |
|
33 |
+
# LLaMa3-8B setup
|
34 |
+
llama_model_id = "meta-llama/Meta-Llama-3-8B"
|
35 |
+
llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model_id)
|
36 |
+
llama_model = LlamaForCausalLM.from_pretrained(llama_model_id, torch_dtype=torch_dtype)
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
# OpenVoiceV2 setup
|
39 |
+
ckpt_base = 'checkpoints/base_speakers/EN'
|
40 |
+
ckpt_converter = 'checkpoints/converter'
|
41 |
+
output_dir = 'outputs'
|
42 |
|
43 |
+
base_speaker_tts = BaseSpeakerTTS(f'{ckpt_base}/config.json',)
|
44 |
+
base_speaker_tts.load_ckpt(f'{ckpt_base}/checkpoint.pth')
|
45 |
|
46 |
+
tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json',)
|
47 |
+
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')
|
|
|
48 |
|
49 |
+
os.makedirs(output_dir, exist_ok=True)
|
50 |
+
source_se = torch.load(f'{ckpt_base}/en_default_se.pth').to(device)
|
|
|
|
|
51 |
|
52 |
+
def process_audio(input_audio):
|
53 |
+
# ASR with Whisper
|
54 |
+
whisper_result = whisper_pipe(input_audio)["text"]
|
55 |
+
|
56 |
+
# Text generation with LLaMa
|
57 |
+
inputs = llama_tokenizer(whisper_result, return_tensors="pt").to(device)
|
58 |
+
outputs = llama_model.generate(**inputs, max_new_tokens=50)
|
59 |
+
generated_text = llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
60 |
+
|
61 |
+
# TTS with OpenVoiceV2
|
62 |
+
reference_speaker = 'resources/example_reference.mp3'
|
63 |
+
target_se, _ = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True)
|
64 |
+
save_path = f'{output_dir}/output_en_default.wav'
|
65 |
+
src_path = f'{output_dir}/tmp.wav'
|
66 |
+
|
67 |
+
base_speaker_tts.tts(generated_text, src_path, speaker='default', language='English', speed=1.0)
|
68 |
+
tone_color_converter.convert(
|
69 |
+
audio_src_path=src_path,
|
70 |
+
src_se=source_se,
|
71 |
+
tgt_se=target_se,
|
72 |
+
output_path=save_path,
|
73 |
+
message="@MyShell"
|
74 |
+
)
|
75 |
|
|
|
|
|
|
|
76 |
return save_path
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
+
@spaces.GPU()
|
79 |
+
def real_time_processing(input_audio):
|
80 |
+
return process_audio(input_audio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
# Gradio interface
|
83 |
iface = gr.Interface(
|
84 |
+
fn=real_time_processing,
|
85 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
86 |
+
outputs=gr.Audio(type="file"),
|
87 |
+
live=True,
|
88 |
+
title="ASR + Text-to-Text + TTS with Whisper, LLaMa3-8B, and OpenVoiceV2",
|
89 |
+
description="Real-time processing using Whisper for ASR, LLaMa3-8B for text generation, and OpenVoiceV2 for TTS."
|
90 |
)
|
91 |
|
92 |
+
if __name__ == "__main__":
|
93 |
+
iface.launch()
|