Spaces:
Build error
Build error
FlawedLLM
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -17,10 +17,22 @@ model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_
|
|
17 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
18 |
model.to("cuda:0")
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
img_buffer = BytesIO(img_bytes)
|
23 |
image = Image.open(img_buffer)
|
|
|
24 |
return image
|
25 |
|
26 |
PLACEHOLDER = """
|
@@ -77,7 +89,7 @@ def bot_streaming(message, history):
|
|
77 |
print(f"prompt is -\n{conversation}")
|
78 |
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
79 |
# image = Image.open(image)
|
80 |
-
image =
|
81 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
82 |
|
83 |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
|
|
|
17 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
18 |
model.to("cuda:0")
|
19 |
|
20 |
+
from PIL import Image
|
21 |
+
import base64
|
22 |
+
import zlib
|
23 |
+
from io import BytesIO
|
24 |
+
|
25 |
+
def decode_and_decompress_image(base64_string):
|
26 |
+
# Decode the Base64 string to bytes
|
27 |
+
compressed_data = base64.b64decode(base64_string.encode('utf-8'))
|
28 |
+
|
29 |
+
# Decompress the data using zlib
|
30 |
+
img_bytes = zlib.decompress(compressed_data)
|
31 |
+
|
32 |
+
# Open the image from bytes
|
33 |
img_buffer = BytesIO(img_bytes)
|
34 |
image = Image.open(img_buffer)
|
35 |
+
|
36 |
return image
|
37 |
|
38 |
PLACEHOLDER = """
|
|
|
89 |
print(f"prompt is -\n{conversation}")
|
90 |
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
91 |
# image = Image.open(image)
|
92 |
+
image = decode_and_decompress_image(image)
|
93 |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
|
94 |
|
95 |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,})
|