import torch import torchaudio import gradio as gr import pyaudio import wave import numpy as np from transformers import WhisperForCTC, WhisperProcessor, AutoModelForSeq2SeqLM, AutoTokenizer from transformers import OpenVoiceV2Processor, OpenVoiceV2 # Load ASR model and processor processor_asr = WhisperProcessor.from_pretrained("openai/whisper-large-v3") model_asr = WhisperForCTC.from_pretrained("openai/whisper-large-v3") # Load text-to-text model and tokenizer text_model = AutoModelForSeq2SeqLM.from_pretrained("meta-llama/Meta-Llama-3-8B") tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B") # Load TTS model tts_processor = OpenVoiceV2Processor.from_pretrained("myshell-ai/OpenVoiceV2") tts_model = OpenVoiceV2.from_pretrained("myshell-ai/OpenVoiceV2") @spaces.GPU() # ASR function def transcribe(audio): waveform, sample_rate = torchaudio.load(audio) inputs = processor_asr(waveform, sampling_rate=sample_rate, return_tensors="pt", padding=True) with torch.no_grad(): logits = model_asr(inputs.input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor_asr.batch_decode(predicted_ids) return transcription[0] @spaces.GPU(duration=300) # Text-to-text function def generate_response(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) outputs = text_model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response @spaces.GPU(duration=300) # TTS function def synthesize_speech(text): inputs = tts_processor(text, return_tensors="pt") with torch.no_grad(): mel_outputs, mel_outputs_postnet, _, alignments = tts_model.inference(inputs.input_ids) audio = tts_model.infer(mel_outputs_postnet) return audio @spaces.GPU(duration=300) # Real-time processing function def real_time_pipeline(): p = pyaudio.PyAudio() stream = p.open(format=pyaudio.paInt16, channels=1, rate=16000, input=True, frames_per_buffer=1024) wake_word = "hello mate" wake_word_detected = False print("Listening for wake word...") try: while True: frames = [] for _ in range(0, int(16000 / 1024 * 2)): # 2 seconds of audio data = stream.read(1024) frames.append(data) audio_data = np.frombuffer(b''.join(frames), dtype=np.int16) # Save the audio to a temporary file for ASR wf = wave.open("temp.wav", 'wb') wf.setnchannels(1) wf.setsampwidth(p.get_sample_size(pyaudio.paInt16)) wf.setframerate(16000) wf.writeframes(b''.join(frames)) wf.close() # Step 1: Transcribe audio to text transcription = transcribe("temp.wav").lower() if wake_word in transcription: wake_word_detected = True print("Wake word detected. Processing audio...") while wake_word_detected: frames = [] for _ in range(0, int(16000 / 1024 * 2)): # 2 seconds of audio data = stream.read(1024) frames.append(data) audio_data = np.frombuffer(b''.join(frames), dtype=np.int16) # Save the audio to a temporary file for ASR wf = wave.open("temp.wav", 'wb') wf.setnchannels(1) wf.setsampwidth(p.get_sample_size(pyaudio.paInt16)) wf.setframerate(16000) wf.writeframes(b''.join(frames)) wf.close() # Step 1: Transcribe audio to text transcription = transcribe("temp.wav") # Step 2: Generate response using text-to-text model response = generate_response(transcription) # Step 3: Synthesize speech from text synthesized_audio = synthesize_speech(response) # Save the synthesized audio to a temporary file output_path = "output.wav" torchaudio.save(output_path, synthesized_audio.squeeze(1), 22050) # Play the synthesized audio wf = wave.open(output_path, 'rb') stream_out = p.open(format=p.get_format_from_width(wf.getsampwidth()), channels=wf.getnchannels(), rate=wf.getframerate(), output=True) data = wf.readframes(1024) while data: stream_out.write(data) data = wf.readframes(1024) stream_out.stop_stream() stream_out.close() wf.close() except KeyboardInterrupt: print("Stopping...") finally: stream.stop_stream() stream.close() p.terminate() # Gradio interface gr_interface = gr.Interface( fn=real_time_pipeline, inputs=None, outputs=None, live=True, title="Real-Time Audio-to-Audio Model", description="ASR + Text-to-Text Model + TTS with Human-like Voice and Emotions" ) iface.launch(inline=False)