File size: 5,556 Bytes
4d6e8c2 ef8f2ae 4d6e8c2 eba6cfa 1c33274 70f5f26 1c33274 70f5f26 4d6e8c2 70f5f26 4d6e8c2 70f5f26 4d6e8c2 ef8f2ae eba6cfa ef8f2ae eba6cfa ef8f2ae eba6cfa ef8f2ae eba6cfa 70f5f26 4d6e8c2 70f5f26 4d6e8c2 1c33274 4d6e8c2 eba6cfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "Evaluate text classification for climate disinformation detection"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
true_labels = test_dataset["label"]
texts=test_dataset["quote"]
labels=test_dataset["label"]
model_dir = "./"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSequenceClassification.from_pretrained(model_dir)
class TextDataset(Dataset):
def __init__(self, texts, labels, tokenizer, max_len=128):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
label = self.labels[idx]
encodings = self.tokenizer(
text,
max_length=self.max_len,
padding='max_length',
truncation=True,
return_tensors="pt"
)
return {
'input_ids': encodings['input_ids'].squeeze(0),
'attention_mask': encodings['attention_mask'].squeeze(0),
'labels': torch.tensor(label, dtype=torch.long)
}
test_dataset = TextDataset(texts, labels, tokenizer)
test_loader = DataLoader(test_dataset, batch_size=16)
# model.eval()
# predictions = []
# with torch.no_grad():
# for inputs, labels in test_loader:
# inputs, labels = inputs.to('cpu'), labels.to('cpu')
# outputs = model(inputs)
# _, predicted = torch.max(outputs, 1)
# predictions.extend(predicted.cpu().numpy())
model.eval()
predictions = []
ground_truth = []
DEVICE='cpu'
with torch.no_grad():
for batch in test_loader:
# Access each component of the batch dictionary
input_ids = batch['input_ids'].to(DEVICE)
attention_mask = batch['attention_mask'].to(DEVICE)
labels = batch['labels'].to(DEVICE)
# Forward pass
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
_, predicted = torch.max(outputs.logits, 1)
# Store predictions and ground truth
predictions.extend(predicted.cpu().numpy())
ground_truth.extend(labels.cpu().numpy())
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results
|