VaultChem commited on
Commit
170285f
·
verified ·
1 Parent(s): 1438647

new version

Browse files
Files changed (1) hide show
  1. app.py +12 -12
app.py CHANGED
@@ -233,7 +233,7 @@ def run_fhe(user_id):
233
  query["evaluation_key"] = encoded_evaluation_key
234
  query["encrypted_encoding"] = encrypted_quantized_encoding
235
  headers = {"Content-type": "application/json"}
236
- # pdb.set_trace()
237
  if task == "0":
238
  response = requests.post(
239
  "http://localhost:8000/predict_HLM",
@@ -436,7 +436,6 @@ task_mapping_2 = {
436
  }
437
 
438
 
439
-
440
  unit_mapping = {
441
  "0": "(mL/min/kg)",
442
  "1": " ",
@@ -447,8 +446,6 @@ unit_mapping = {
447
  }
448
 
449
 
450
-
451
-
452
  task_options = list(task_mapping.values())
453
 
454
  # Create the dropdown menu
@@ -636,7 +633,6 @@ if __name__ == "__main__":
636
  )
637
  st.toast("Session successfully completed!!!")
638
 
639
-
640
  st.markdown("Is this a large, average or small value for this property? 🤔 Find out by comparing with the property distribution of the training dataset")
641
  # now load the data from the pkl
642
  with open("all_data.pkl", "rb") as f:
@@ -648,22 +644,29 @@ if __name__ == "__main__":
648
  task_label_2 = task_mapping_2[st.session_state["task"]]
649
  data = all_data[task_label_2]
650
 
651
-
652
  # Create a histogram
653
- fig = go.Figure(go.Histogram(x=data, nbinsx=20, marker_color='blue', opacity=0.5))
 
 
 
 
 
 
 
 
654
 
655
  # If you don't have specific y-values for the vertical line, you can set them to ensure the line spans the plot.
656
  # Here, we're assuming a static range. You might want to adjust these based on your dataset's characteristics.
657
  max_y_value = np.max(np.histogram(data, bins=20)[0]) # Calculate the max height of the histogram bars
658
 
659
- fig.add_trace(go.Scatter(x=[value, value], y=[0, max_y_value * 1.1], mode="lines", name="Threshold", line=dict(color="red", dash="dash")))
660
 
661
  # Update layout if necessary
662
  fig.update_layout(
663
  title="Comparison of the molecule's value with the distribution of the ADME dataset",
664
  xaxis_title=task_label_2,
665
  yaxis_title="Count",
666
- bargap=0.2, # Adjust the gap between bars
667
  )
668
 
669
  # Display the figure in the Streamlit app
@@ -671,9 +674,6 @@ if __name__ == "__main__":
671
  else:
672
  st.warning("Check if FHE computation has been done.")
673
 
674
-
675
-
676
-
677
  with st.container():
678
  st.subheader(f"Step 6 : Reset to predict a new molecule")
679
  reset_button = st.button("Reset app", on_click=clear_session_state)
 
233
  query["evaluation_key"] = encoded_evaluation_key
234
  query["encrypted_encoding"] = encrypted_quantized_encoding
235
  headers = {"Content-type": "application/json"}
236
+
237
  if task == "0":
238
  response = requests.post(
239
  "http://localhost:8000/predict_HLM",
 
436
  }
437
 
438
 
 
439
  unit_mapping = {
440
  "0": "(mL/min/kg)",
441
  "1": " ",
 
446
  }
447
 
448
 
 
 
449
  task_options = list(task_mapping.values())
450
 
451
  # Create the dropdown menu
 
633
  )
634
  st.toast("Session successfully completed!!!")
635
 
 
636
  st.markdown("Is this a large, average or small value for this property? 🤔 Find out by comparing with the property distribution of the training dataset")
637
  # now load the data from the pkl
638
  with open("all_data.pkl", "rb") as f:
 
644
  task_label_2 = task_mapping_2[st.session_state["task"]]
645
  data = all_data[task_label_2]
646
 
 
647
  # Create a histogram
648
+ fig = go.Figure(
649
+ go.Histogram(
650
+ x=data,
651
+ nbinsx=20,
652
+ marker_color="blue",
653
+ opacity=0.5,
654
+ name="ADME dataset",
655
+ )
656
+ )
657
 
658
  # If you don't have specific y-values for the vertical line, you can set them to ensure the line spans the plot.
659
  # Here, we're assuming a static range. You might want to adjust these based on your dataset's characteristics.
660
  max_y_value = np.max(np.histogram(data, bins=20)[0]) # Calculate the max height of the histogram bars
661
 
662
+ fig.add_trace(go.Scatter(x=[value, value], y=[0, max_y_value * 1.1], mode="lines", name="Prediction", line=dict(color="red", dash="dash")))
663
 
664
  # Update layout if necessary
665
  fig.update_layout(
666
  title="Comparison of the molecule's value with the distribution of the ADME dataset",
667
  xaxis_title=task_label_2,
668
  yaxis_title="Count",
669
+ bargap=0.2,
670
  )
671
 
672
  # Display the figure in the Streamlit app
 
674
  else:
675
  st.warning("Check if FHE computation has been done.")
676
 
 
 
 
677
  with st.container():
678
  st.subheader(f"Step 6 : Reset to predict a new molecule")
679
  reset_button = st.button("Reset app", on_click=clear_session_state)