VaultChem commited on
Commit
b19dc1c
·
verified ·
1 Parent(s): 9df227a
Files changed (1) hide show
  1. app.py +15 -9
app.py CHANGED
@@ -1,9 +1,8 @@
1
- # Uncomment if run locally
2
  import os
3
- #import sys
4
- #
5
- #sys.path.append(os.path.abspath("../../../molvault"))
6
- #sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
7
 
8
  from requests import head
9
  from concrete.ml.deployment import FHEModelClient
@@ -68,6 +67,15 @@ formatted_text = (
68
 
69
  st.markdown(formatted_text, unsafe_allow_html=True)
70
 
 
 
 
 
 
 
 
 
 
71
  interesting_text = """
72
  Machine learning (**ML**) has become a cornerstone of modern drug discovery. However, the data used to evaluate the ML models is often **confidential**.
73
  This is especially true for the pharmaceutical industry where new drug candidates are considered as the most valuable asset.
@@ -272,11 +280,9 @@ def run_fhe(user_id):
272
  )
273
  else:
274
  print("Invalid task number")
275
- # pdb.set_trace()
276
  encrypted_prediction = base64.b64decode(response.json()["encrypted_prediction"])
277
-
278
- # Save encrypted_prediction in a file, since too large to pass through regular Gradio
279
- # buttons, https://github.com/gradio-app/gradio/issues/1877
280
  numpy.save(f"tmp/tmp_encrypted_prediction_{user_id}.npy", encrypted_prediction)
281
  encrypted_prediction_shorten = list(encrypted_prediction)[
282
  :ENCRYPTED_DATA_BROWSER_LIMIT
 
 
1
  import os
2
+ # Uncomment if run locally
3
+ # import sys
4
+ # sys.path.append(os.path.abspath("../../../molvault"))
5
+ # sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
6
 
7
  from requests import head
8
  from concrete.ml.deployment import FHEModelClient
 
67
 
68
  st.markdown(formatted_text, unsafe_allow_html=True)
69
 
70
+ # make a small hint that the app needs a few seconds to start
71
+ st.markdown(
72
+ "<p style='text-align: center; color: grey;'>"
73
+ + "The app needs a second to start..."
74
+ + "</p>",
75
+ unsafe_allow_html=True,
76
+ )
77
+
78
+
79
  interesting_text = """
80
  Machine learning (**ML**) has become a cornerstone of modern drug discovery. However, the data used to evaluate the ML models is often **confidential**.
81
  This is especially true for the pharmaceutical industry where new drug candidates are considered as the most valuable asset.
 
280
  )
281
  else:
282
  print("Invalid task number")
283
+
284
  encrypted_prediction = base64.b64decode(response.json()["encrypted_prediction"])
285
+
 
 
286
  numpy.save(f"tmp/tmp_encrypted_prediction_{user_id}.npy", encrypted_prediction)
287
  encrypted_prediction_shorten = list(encrypted_prediction)[
288
  :ENCRYPTED_DATA_BROWSER_LIMIT