ynhe commited on
Commit
08dd3a6
·
verified ·
1 Parent(s): b1c3255

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py CHANGED
@@ -118,6 +118,35 @@ def get_final_score(df, selected_columns):
118
  df.insert(1, 'Selected Score', selected_score)
119
  return df
120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
  def get_baseline_df():
122
  submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
123
  submission_repo.git_pull()
 
118
  df.insert(1, 'Selected Score', selected_score)
119
  return df
120
 
121
+
122
+ def get_final_score_quality(df, selected_columns):
123
+ normalize_df = get_normalized_df(df)
124
+ #final_score = normalize_df.drop('name', axis=1).sum(axis=1)
125
+ # for name in normalize_df.drop('Model Name (clickable)', axis=1):
126
+ # normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name]
127
+ quality_score = normalize_df[QUALITY_LIST].sum(axis=1) / len(QUALITY_LIST)
128
+ # quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST])
129
+ # semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ])
130
+ final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT)
131
+ if 'Total Score' in df:
132
+ df['Total Score'] = final_score
133
+ else:
134
+ df.insert(1, 'Total Score', final_score)
135
+ if 'Semantic Score' in df:
136
+ df['Semantic Score'] = semantic_score
137
+ else:
138
+ df.insert(2, 'Semantic Score', semantic_score)
139
+ if 'Quality Score' in df:
140
+ df['Quality Score'] = quality_score
141
+ else:
142
+ df.insert(3, 'Quality Score', quality_score)
143
+ selected_score = calculate_selected_score(normalize_df, selected_columns)
144
+ if 'Selected Score' in df:
145
+ df['Selected Score'] = selected_score
146
+ else:
147
+ df.insert(1, 'Selected Score', selected_score)
148
+ return df
149
+
150
  def get_baseline_df():
151
  submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset")
152
  submission_repo.git_pull()