Spaces:
Runtime error
Runtime error
File size: 19,600 Bytes
d2c7607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Sample new images from a pre-trained DiT.
"""
import os
import sys
import math
try:
import utils
from diffusion import create_diffusion
from download import find_model
except:
sys.path.append(os.path.split(sys.path[0])[0])
import utils
from diffusion import create_diffusion
from download import find_model
import torch
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import argparse
import torchvision
from einops import rearrange
from models import get_models
from torchvision.utils import save_image
from diffusers.models import AutoencoderKL
from models.clip import TextEmbedder
from omegaconf import OmegaConf
from PIL import Image
import numpy as np
from torchvision import transforms
sys.path.append("..")
from datasets import video_transforms
from decord import VideoReader
from utils import mask_generation_before
from natsort import natsorted
from diffusers.utils.import_utils import is_xformers_available
from tca.tca_transform import tca_transform_model
def get_input(args):
input_path = args.input_path
transform_video = transforms.Compose([
video_transforms.ToTensorVideo(), # TCHW
video_transforms.ResizeVideo((args.image_h, args.image_w)),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval)
if input_path is not None:
print(f'loading video from {input_path}')
if os.path.isdir(input_path):
file_list = os.listdir(input_path)
video_frames = []
if args.mask_type.startswith('onelast'):
num = int(args.mask_type.split('onelast')[-1])
# get first and last frame
first_frame_path = os.path.join(input_path, natsorted(file_list)[0])
last_frame_path = os.path.join(input_path, natsorted(file_list)[-1])
first_frame = torch.as_tensor(np.array(Image.open(first_frame_path).convert("RGB"), dtype=np.uint8, copy=True)).unsqueeze(0)
last_frame = torch.as_tensor(np.array(Image.open(last_frame_path).convert("RGB"), dtype=np.uint8, copy=True)).unsqueeze(0)
for i in range(num):
video_frames.append(first_frame)
# add zeros to frames
num_zeros = args.num_frames-2*num
for i in range(num_zeros):
zeros = torch.zeros_like(first_frame)
video_frames.append(zeros)
for i in range(num):
video_frames.append(last_frame)
n = 0
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
video_frames = transform_video(video_frames)
elif args.mask_type.startswith('video_onelast'):
num = int(args.mask_type.split('onelast')[-1])
first_frame_path = os.path.join(input_path, natsorted(file_list)[0])
last_frame_path = os.path.join(input_path, natsorted(file_list)[-1])
video_reader_first = VideoReader(first_frame_path)
video_reader_last = VideoReader(last_frame_path)
total_frames_first = len(video_reader_first)
total_frames_last = len(video_reader_last)
start_frame_ind_f, end_frame_ind_f = temporal_sample_func(total_frames_first)
start_frame_ind_l, end_frame_ind_l = temporal_sample_func(total_frames_last)
frame_indice_f = np.linspace(start_frame_ind_f, end_frame_ind_f-1, args.num_frames, dtype=int)
frame_indice_l = np.linspace(start_frame_ind_l, end_frame_ind_l-1, args.num_frames, dtype=int)
video_frames_first = torch.from_numpy(video_reader_first.get_batch(frame_indice_f).asnumpy()).permute(0, 3, 1, 2).contiguous()
video_frames_last = torch.from_numpy(video_reader_last.get_batch(frame_indice_l).asnumpy()).permute(0, 3, 1, 2).contiguous()
video_frames_first = transform_video(video_frames_first) # f,c,h,w
video_frames_last = transform_video(video_frames_last)
num_zeros = args.num_frames-2*num
video_frames.append(video_frames_first[-num:])
for i in range(num_zeros):
zeros = torch.zeros_like(video_frames_first[0]).unsqueeze(0)
video_frames.append(zeros)
video_frames.append(video_frames_last[:num])
video_frames = torch.cat(video_frames, dim=0)
# video_frames = transform_video(video_frames)
n = num
else:
for file in file_list:
if file.endswith('jpg') or file.endswith('png'):
image = torch.as_tensor(np.array(Image.open(file), dtype=np.uint8, copy=True)).unsqueeze(0)
video_frames.append(image)
else:
continue
n = 0
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
video_frames = transform_video(video_frames)
return video_frames, n
elif os.path.isfile(input_path):
_, full_file_name = os.path.split(input_path)
file_name, extention = os.path.splitext(full_file_name)
if extention == '.jpg' or extention == '.png':
# raise TypeError('a single image is not supported yet!!')
print("reading video from a image")
video_frames = []
num = int(args.mask_type.split('first')[-1])
first_frame = torch.as_tensor(np.array(Image.open(input_path).convert("RGB"), dtype=np.uint8, copy=True)).unsqueeze(0)
for i in range(num):
video_frames.append(first_frame)
num_zeros = args.num_frames - num
for i in range(num_zeros):
zeros = torch.zeros_like(first_frame)
video_frames.append(zeros)
n = 0
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
H_scale = args.image_h / video_frames.shape[2]
W_scale = args.image_w / video_frames.shape[3]
scale_ = H_scale
if W_scale < H_scale:
scale_ = W_scale
video_frames = torch.nn.functional.interpolate(video_frames, scale_factor=scale_, mode="bilinear", align_corners=False)
video_frames = transform_video(video_frames)
return video_frames, n
elif extention == '.mp4':
video_reader = VideoReader(input_path)
total_frames = len(video_reader)
start_frame_ind, end_frame_ind = temporal_sample_func(total_frames)
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, args.num_frames, dtype=int)
video_frames = torch.from_numpy(video_reader.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous()
video_frames = transform_video(video_frames)
n = args.researve_frame
del video_reader
return video_frames, n
else:
raise TypeError(f'{extention} is not supported !!')
else:
raise ValueError('Please check your path input!!')
else:
# raise ValueError('Need to give a video or some images')
print('given video is None, using text to video')
video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8)
args.mask_type = 'all'
video_frames = transform_video(video_frames)
n = 0
return video_frames, n
def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,):
# masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
# masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
# masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
# mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_size, latent_size)).unsqueeze(1)
b,f,c,h,w=video_input.shape
latent_h = args.image_size[0] // 8
latent_w = args.image_size[1] // 8
# prepare inputs
# video_input = rearrange(video_input, 'b f c h w -> (b f) c h w').contiguous()
# video_input = vae.encode(video_input).latent_dist.sample().mul_(0.18215)
# video_input = rearrange(video_input, '(b f) c h w -> b c f h w', b=b).contiguous()
if args.use_fp16:
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) # b,c,f,h,w
masked_video = masked_video.to(dtype=torch.float16)
mask = mask.to(dtype=torch.float16)
else:
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
# classifier_free_guidance
if args.do_classifier_free_guidance:
masked_video = torch.cat([masked_video] * 2)
mask = torch.cat([mask] * 2)
z = torch.cat([z] * 2)
prompt_all = [prompt] + [args.negative_prompt]
else:
masked_video = masked_video
mask = mask
z = z
prompt_all = [prompt]
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
model_kwargs = dict(encoder_hidden_states=text_prompt,
class_labels=None,
cfg_scale=args.cfg_scale,
use_fp16=args.use_fp16,) # tav unet
# Sample images:
if args.sample_method == 'ddim':
samples = diffusion.ddim_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
mask=mask, x_start=masked_video, use_concat=args.use_mask
)
elif args.sample_method == 'ddpm':
samples = diffusion.p_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
mask=mask, x_start=masked_video, use_concat=args.use_mask
)
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
if args.use_fp16:
samples = samples.to(dtype=torch.float16)
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
return video_clip
def auto_inpainting_temp_split(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,):
b,f,c,h,w=video_input.shape
latent_h = args.image_size[0] // 8
latent_w = args.image_size[1] // 8
if args.use_fp16:
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) # b,c,f,h,w
masked_video = masked_video.to(dtype=torch.float16)
mask = mask.to(dtype=torch.float16)
else:
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
if args.do_classifier_free_guidance:
masked_video = torch.cat([masked_video] * 3)
mask = torch.cat([mask] * 3)
z = torch.cat([z] * 3)
prompt_all = [prompt] + [prompt] + [args.negative_prompt]
prompt_temp = [prompt] + [""] + [""]
else:
masked_video = masked_video
mask = mask
z = z
prompt_all = [prompt]
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
temporal_text_prompt = text_encoder(text_prompts=prompt_temp, train=False)
model_kwargs = dict(encoder_hidden_states=text_prompt,
class_labels=None,
cfg_scale=args.cfg_scale,
use_fp16=args.use_fp16,
encoder_temporal_hidden_states=temporal_text_prompt) # tav unet
# Sample images:
if args.sample_method == 'ddim':
samples = diffusion.ddim_sample_loop(
model.forward_with_cfg_temp_split, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
mask=mask, x_start=masked_video, use_concat=args.use_mask
)
elif args.sample_method == 'ddpm':
samples = diffusion.p_sample_loop(
model.forward_with_cfg_temp_split, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \
mask=mask, x_start=masked_video, use_concat=args.use_mask
)
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
if args.use_fp16:
samples = samples.to(dtype=torch.float16)
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
return video_clip
def main(args):
# torch.cuda.empty_cache()
print("--------------------------begin running--------------------------", flush=True)
if args.gpu is not None:
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
# Setup PyTorch:
if args.seed:
torch.manual_seed(args.seed)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
# device = "cpu"
if args.ckpt is None:
assert args.model == "DiT-XL/2", "Only DiT-XL/2 models are available for auto-download."
assert args.image_size in [256, 512]
assert args.num_classes == 1000
# Load model:
latent_h = args.image_size[0] // 8
latent_w = args.image_size[1] // 8
args.image_h = args.image_size[0]
args.image_w = args.image_size[1]
args.latent_h = latent_h
args.latent_w = latent_w
print('loading model')
model = get_models(args.use_mask, args).to(device)
model = tca_transform_model(model).to(device)
# model = temp_scale_set(model, 0.98)
if args.use_compile:
model = torch.compile(model)
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
model.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Auto-download a pre-trained model or load a custom DiT checkpoint from train.py:
ckpt_path = args.ckpt or f"DiT-XL-2-{args.image_size}x{args.image_size}.pt"
state_dict = find_model(ckpt_path)
model.load_state_dict(state_dict)
print('loading succeed')
model.eval() # important!
pretrained_model_path = args.pretrained_model_path
diffusion = create_diffusion(str(args.num_sampling_steps))
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device)
text_encoder = TextEmbedder(tokenizer_path=pretrained_model_path + "tokenizer",
encoder_path=pretrained_model_path + "text_encoder").to(device)
if args.use_fp16:
print('Warnning: using half percision for inferencing!')
vae.to(dtype=torch.float16)
model.to(dtype=torch.float16)
text_encoder.to(dtype=torch.float16)
# Labels to condition the model with (feel free to change):
prompts = args.text_prompt
class_name = [p + args.additional_prompt for p in prompts]
if args.use_autoregressive:
if not os.path.exists(os.path.join(args.save_img_path)):
os.makedirs(os.path.join(args.save_img_path))
video_input, researve_frames = get_input(args) # f,c,h,w
video_input = video_input.to(device).unsqueeze(0) # b,f,c,h,w
mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) # b,f,c,h,w
# TODO: change the first3 to last3
if args.mask_type.startswith('first') and researve_frames != 0:
masked_video = torch.cat([video_input[:,-researve_frames:], video_input[:,:-researve_frames]], dim=1) * (mask == 0)
else:
masked_video = video_input * (mask == 0)
all_video = []
if researve_frames != 0:
all_video.append(video_input)
for idx, prompt in enumerate(class_name):
if idx == 0:
video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
video_clip_ = video_clip.unsqueeze(0)
all_video.append(video_clip_[:, researve_frames:])
else:
researve_frames = args.researve_frame
if args.mask_type.startswith('first') and researve_frames != 0:
masked_video = torch.cat([video_clip_[:,-researve_frames:], video_clip_[:,:-researve_frames]], dim=1) * (mask == 0)
else:
masked_video = video_input * (mask == 0)
video_clip = auto_inpainting(args, video_clip.unsqueeze(0), masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
video_clip_ = video_clip.unsqueeze(0)
all_video.append(video_clip_[:, researve_frames:])
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
if args.mask_type.startswith('video_onelast'):
torchvision.io.write_video(os.path.join(args.save_img_path, 'clip_video_' + '%04d' % idx + '.mp4'), video_[researve_frames:-researve_frames], fps=8)
else:
torchvision.io.write_video(os.path.join(args.save_img_path, 'clip_video_' + '%04d' % idx + '.mp4'), video_, fps=8)
if args.mask_type.startswith('first') and researve_frames != 0:
all_video = torch.cat(all_video, dim=1).squeeze(0)
video_ = ((all_video * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
torchvision.io.write_video(os.path.join(args.save_img_path, 'complete_video' + '.mp4'), video_, fps=8)
else:
# all_video = torch.cat(all_video, dim=-1).squeeze(0)
pass
print(f'save in {args.save_img_path}')
return os.path.join(args.save_img_path, 'clip_video_' + '%04d' % idx + '.mp4')
def call_main(input):
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="./configs/sample_mask.yaml")
args = parser.parse_args()
omega_conf = OmegaConf.load(args.config)
omega_conf.text_prompt = [input]
return main(omega_conf)
|