# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Sample new images from a pre-trained DiT. """ import os import sys import math try: import utils from diffusion import create_diffusion from download import find_model except: sys.path.append(os.path.split(sys.path[0])[0]) import utils from diffusion import create_diffusion from download import find_model import torch torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True import argparse import torchvision from einops import rearrange from models import get_models from torchvision.utils import save_image from diffusers.models import AutoencoderKL from models.clip import TextEmbedder from omegaconf import OmegaConf from PIL import Image import numpy as np from torchvision import transforms sys.path.append("..") from datasets import video_transforms from decord import VideoReader from utils import mask_generation_before from natsort import natsorted from diffusers.utils.import_utils import is_xformers_available from tca.tca_transform import tca_transform_model def get_input(args): input_path = args.input_path transform_video = transforms.Compose([ video_transforms.ToTensorVideo(), # TCHW video_transforms.ResizeVideo((args.image_h, args.image_w)), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True) ]) temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval) if input_path is not None: print(f'loading video from {input_path}') if os.path.isdir(input_path): file_list = os.listdir(input_path) video_frames = [] if args.mask_type.startswith('onelast'): num = int(args.mask_type.split('onelast')[-1]) # get first and last frame first_frame_path = os.path.join(input_path, natsorted(file_list)[0]) last_frame_path = os.path.join(input_path, natsorted(file_list)[-1]) first_frame = torch.as_tensor(np.array(Image.open(first_frame_path).convert("RGB"), dtype=np.uint8, copy=True)).unsqueeze(0) last_frame = torch.as_tensor(np.array(Image.open(last_frame_path).convert("RGB"), dtype=np.uint8, copy=True)).unsqueeze(0) for i in range(num): video_frames.append(first_frame) # add zeros to frames num_zeros = args.num_frames-2*num for i in range(num_zeros): zeros = torch.zeros_like(first_frame) video_frames.append(zeros) for i in range(num): video_frames.append(last_frame) n = 0 video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w video_frames = transform_video(video_frames) elif args.mask_type.startswith('video_onelast'): num = int(args.mask_type.split('onelast')[-1]) first_frame_path = os.path.join(input_path, natsorted(file_list)[0]) last_frame_path = os.path.join(input_path, natsorted(file_list)[-1]) video_reader_first = VideoReader(first_frame_path) video_reader_last = VideoReader(last_frame_path) total_frames_first = len(video_reader_first) total_frames_last = len(video_reader_last) start_frame_ind_f, end_frame_ind_f = temporal_sample_func(total_frames_first) start_frame_ind_l, end_frame_ind_l = temporal_sample_func(total_frames_last) frame_indice_f = np.linspace(start_frame_ind_f, end_frame_ind_f-1, args.num_frames, dtype=int) frame_indice_l = np.linspace(start_frame_ind_l, end_frame_ind_l-1, args.num_frames, dtype=int) video_frames_first = torch.from_numpy(video_reader_first.get_batch(frame_indice_f).asnumpy()).permute(0, 3, 1, 2).contiguous() video_frames_last = torch.from_numpy(video_reader_last.get_batch(frame_indice_l).asnumpy()).permute(0, 3, 1, 2).contiguous() video_frames_first = transform_video(video_frames_first) # f,c,h,w video_frames_last = transform_video(video_frames_last) num_zeros = args.num_frames-2*num video_frames.append(video_frames_first[-num:]) for i in range(num_zeros): zeros = torch.zeros_like(video_frames_first[0]).unsqueeze(0) video_frames.append(zeros) video_frames.append(video_frames_last[:num]) video_frames = torch.cat(video_frames, dim=0) # video_frames = transform_video(video_frames) n = num else: for file in file_list: if file.endswith('jpg') or file.endswith('png'): image = torch.as_tensor(np.array(Image.open(file), dtype=np.uint8, copy=True)).unsqueeze(0) video_frames.append(image) else: continue n = 0 video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w video_frames = transform_video(video_frames) return video_frames, n elif os.path.isfile(input_path): _, full_file_name = os.path.split(input_path) file_name, extention = os.path.splitext(full_file_name) if extention == '.jpg' or extention == '.png': # raise TypeError('a single image is not supported yet!!') print("reading video from a image") video_frames = [] num = int(args.mask_type.split('first')[-1]) first_frame = torch.as_tensor(np.array(Image.open(input_path).convert("RGB"), dtype=np.uint8, copy=True)).unsqueeze(0) for i in range(num): video_frames.append(first_frame) num_zeros = args.num_frames - num for i in range(num_zeros): zeros = torch.zeros_like(first_frame) video_frames.append(zeros) n = 0 video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w H_scale = args.image_h / video_frames.shape[2] W_scale = args.image_w / video_frames.shape[3] scale_ = H_scale if W_scale < H_scale: scale_ = W_scale video_frames = torch.nn.functional.interpolate(video_frames, scale_factor=scale_, mode="bilinear", align_corners=False) video_frames = transform_video(video_frames) return video_frames, n elif extention == '.mp4': video_reader = VideoReader(input_path) total_frames = len(video_reader) start_frame_ind, end_frame_ind = temporal_sample_func(total_frames) frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, args.num_frames, dtype=int) video_frames = torch.from_numpy(video_reader.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous() video_frames = transform_video(video_frames) n = args.researve_frame del video_reader return video_frames, n else: raise TypeError(f'{extention} is not supported !!') else: raise ValueError('Please check your path input!!') else: # raise ValueError('Need to give a video or some images') print('given video is None, using text to video') video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8) args.mask_type = 'all' video_frames = transform_video(video_frames) n = 0 return video_frames, n def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,): # masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous() # masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215) # masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous() # mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_size, latent_size)).unsqueeze(1) b,f,c,h,w=video_input.shape latent_h = args.image_size[0] // 8 latent_w = args.image_size[1] // 8 # prepare inputs # video_input = rearrange(video_input, 'b f c h w -> (b f) c h w').contiguous() # video_input = vae.encode(video_input).latent_dist.sample().mul_(0.18215) # video_input = rearrange(video_input, '(b f) c h w -> b c f h w', b=b).contiguous() if args.use_fp16: z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) # b,c,f,h,w masked_video = masked_video.to(dtype=torch.float16) mask = mask.to(dtype=torch.float16) else: z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous() masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215) masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous() mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1) # classifier_free_guidance if args.do_classifier_free_guidance: masked_video = torch.cat([masked_video] * 2) mask = torch.cat([mask] * 2) z = torch.cat([z] * 2) prompt_all = [prompt] + [args.negative_prompt] else: masked_video = masked_video mask = mask z = z prompt_all = [prompt] text_prompt = text_encoder(text_prompts=prompt_all, train=False) model_kwargs = dict(encoder_hidden_states=text_prompt, class_labels=None, cfg_scale=args.cfg_scale, use_fp16=args.use_fp16,) # tav unet # Sample images: if args.sample_method == 'ddim': samples = diffusion.ddim_sample_loop( model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \ mask=mask, x_start=masked_video, use_concat=args.use_mask ) elif args.sample_method == 'ddpm': samples = diffusion.p_sample_loop( model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \ mask=mask, x_start=masked_video, use_concat=args.use_mask ) samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32] if args.use_fp16: samples = samples.to(dtype=torch.float16) video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32] video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256] return video_clip def auto_inpainting_temp_split(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,): b,f,c,h,w=video_input.shape latent_h = args.image_size[0] // 8 latent_w = args.image_size[1] // 8 if args.use_fp16: z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, dtype=torch.float16, device=device) # b,c,f,h,w masked_video = masked_video.to(dtype=torch.float16) mask = mask.to(dtype=torch.float16) else: z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous() masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215) masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous() mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1) if args.do_classifier_free_guidance: masked_video = torch.cat([masked_video] * 3) mask = torch.cat([mask] * 3) z = torch.cat([z] * 3) prompt_all = [prompt] + [prompt] + [args.negative_prompt] prompt_temp = [prompt] + [""] + [""] else: masked_video = masked_video mask = mask z = z prompt_all = [prompt] text_prompt = text_encoder(text_prompts=prompt_all, train=False) temporal_text_prompt = text_encoder(text_prompts=prompt_temp, train=False) model_kwargs = dict(encoder_hidden_states=text_prompt, class_labels=None, cfg_scale=args.cfg_scale, use_fp16=args.use_fp16, encoder_temporal_hidden_states=temporal_text_prompt) # tav unet # Sample images: if args.sample_method == 'ddim': samples = diffusion.ddim_sample_loop( model.forward_with_cfg_temp_split, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \ mask=mask, x_start=masked_video, use_concat=args.use_mask ) elif args.sample_method == 'ddpm': samples = diffusion.p_sample_loop( model.forward_with_cfg_temp_split, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, \ mask=mask, x_start=masked_video, use_concat=args.use_mask ) samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32] if args.use_fp16: samples = samples.to(dtype=torch.float16) video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32] video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256] return video_clip def main(args): # torch.cuda.empty_cache() print("--------------------------begin running--------------------------", flush=True) if args.gpu is not None: os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu) # Setup PyTorch: if args.seed: torch.manual_seed(args.seed) torch.set_grad_enabled(False) device = "cuda" if torch.cuda.is_available() else "cpu" # device = "cpu" if args.ckpt is None: assert args.model == "DiT-XL/2", "Only DiT-XL/2 models are available for auto-download." assert args.image_size in [256, 512] assert args.num_classes == 1000 # Load model: latent_h = args.image_size[0] // 8 latent_w = args.image_size[1] // 8 args.image_h = args.image_size[0] args.image_w = args.image_size[1] args.latent_h = latent_h args.latent_w = latent_w print('loading model') model = get_models(args.use_mask, args).to(device) model = tca_transform_model(model).to(device) # model = temp_scale_set(model, 0.98) if args.use_compile: model = torch.compile(model) if args.enable_xformers_memory_efficient_attention: if is_xformers_available(): model.enable_xformers_memory_efficient_attention() else: raise ValueError("xformers is not available. Make sure it is installed correctly") # Auto-download a pre-trained model or load a custom DiT checkpoint from train.py: ckpt_path = args.ckpt or f"DiT-XL-2-{args.image_size}x{args.image_size}.pt" state_dict = find_model(ckpt_path) model.load_state_dict(state_dict) print('loading succeed') model.eval() # important! pretrained_model_path = args.pretrained_model_path diffusion = create_diffusion(str(args.num_sampling_steps)) vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device) text_encoder = TextEmbedder(tokenizer_path=pretrained_model_path + "tokenizer", encoder_path=pretrained_model_path + "text_encoder").to(device) if args.use_fp16: print('Warnning: using half percision for inferencing!') vae.to(dtype=torch.float16) model.to(dtype=torch.float16) text_encoder.to(dtype=torch.float16) # Labels to condition the model with (feel free to change): prompts = args.text_prompt class_name = [p + args.additional_prompt for p in prompts] if args.use_autoregressive: if not os.path.exists(os.path.join(args.save_img_path)): os.makedirs(os.path.join(args.save_img_path)) video_input, researve_frames = get_input(args) # f,c,h,w video_input = video_input.to(device).unsqueeze(0) # b,f,c,h,w mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) # b,f,c,h,w # TODO: change the first3 to last3 if args.mask_type.startswith('first') and researve_frames != 0: masked_video = torch.cat([video_input[:,-researve_frames:], video_input[:,:-researve_frames]], dim=1) * (mask == 0) else: masked_video = video_input * (mask == 0) all_video = [] if researve_frames != 0: all_video.append(video_input) for idx, prompt in enumerate(class_name): if idx == 0: video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,) video_clip_ = video_clip.unsqueeze(0) all_video.append(video_clip_[:, researve_frames:]) else: researve_frames = args.researve_frame if args.mask_type.startswith('first') and researve_frames != 0: masked_video = torch.cat([video_clip_[:,-researve_frames:], video_clip_[:,:-researve_frames]], dim=1) * (mask == 0) else: masked_video = video_input * (mask == 0) video_clip = auto_inpainting(args, video_clip.unsqueeze(0), masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,) video_clip_ = video_clip.unsqueeze(0) all_video.append(video_clip_[:, researve_frames:]) video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1) if args.mask_type.startswith('video_onelast'): torchvision.io.write_video(os.path.join(args.save_img_path, 'clip_video_' + '%04d' % idx + '.mp4'), video_[researve_frames:-researve_frames], fps=8) else: torchvision.io.write_video(os.path.join(args.save_img_path, 'clip_video_' + '%04d' % idx + '.mp4'), video_, fps=8) if args.mask_type.startswith('first') and researve_frames != 0: all_video = torch.cat(all_video, dim=1).squeeze(0) video_ = ((all_video * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1) torchvision.io.write_video(os.path.join(args.save_img_path, 'complete_video' + '.mp4'), video_, fps=8) else: # all_video = torch.cat(all_video, dim=-1).squeeze(0) pass print(f'save in {args.save_img_path}') return os.path.join(args.save_img_path, 'clip_video_' + '%04d' % idx + '.mp4') def call_main(input): parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default="./configs/sample_mask.yaml") args = parser.parse_args() omega_conf = OmegaConf.load(args.config) omega_conf.text_prompt = [input] return main(omega_conf)