Spaces:
Sleeping
Sleeping
File size: 7,497 Bytes
a27e4b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import torch
from typing import Tuple
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + negative
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
pipe.to("cuda")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(prompt, negative_prompt, width, height, guidance_scale, style_name=None):
seed = random.randint(0,4294967295)
generator = torch.Generator().manual_seed(seed)
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
image = [pipe(
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
width = width,
height = height,
generator = generator
).images[0] for _ in range(4)]
return image
examples = [
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
"A serious capybara at work, wearing a suit",
'A Squirtle fine dining with a view to the London Eye',
'a graffiti of a robot serving meals to people',
'a beautiful cabin in Attersee, Austria, 3d animation style',
]
css="""
#col-container {
margin: 0 auto;
max-width: 1000px;
padding-top: 20px;
text-align: center;
}
.header {
margin: 10px auto 10px auto;
text-align: center;
max-width: 600px;
}
#example-container {
max-width: 1000px;
margin: 0 auto;
}
.footer {
margin: 25px auto 45px auto;
text-align: center;
max-width: 600px;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
}
"""
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML(
"""
<div class="header">
<h1>Welcome to Metamorph: Your Creative Gateway</h1>
<h4>
Transform your words into stunning visuals with our advanced AI-powered Text-to-Image generator
</h4>
</div>
""")
gr.Markdown(f"""
Currently running on {power_device}.
""")
with gr.Row(elem_id="col-container"):
# Left column
with gr.Column(scale=1,elem_id="left-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Generate", scale=0)
with gr.Accordion("Advanced Settings", open=True):
negative_prompt = gr.Textbox(
label="Negative prompt",
show_label=False,
max_lines=1,
placeholder="Enter a negative prompt",
elem_id="negative-prompt-text-input",
)
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Image Style",
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=50.0,
step=0.1,
value=10,
)
# Right column
with gr.Column(scale=1, elem_id="right-container"):
result = gr.Gallery(label="Results", show_label=False, format="png", show_share_button=False, height=475)
gr.Examples(
elem_id="example-container",
examples = examples,
inputs = [prompt]
)
gr.HTML(
"""
<div class="footer">
<p>
This application harnesses the cutting-edge Stable Diffusion XL (SDXL) model by <a href="https://huggingface.co/stabilityai" style="text-decoration: underline;" target="_blank">StabilityAI</a>, offering unparalleled text-to-image generation, while acknowledging potential biases and content considerations outlined in the model card.</p>
</p>
</div>
"""
)
run_button.click(
fn = infer,
inputs = [prompt, negative_prompt, width, height, guidance_scale, style_selection],
outputs = [result]
)
demo.queue().launch() |