import streamlit as st import data import models def main(): st.title("Sentiment Analysis") uploaded_file = st.file_uploader("Upload CSV or Excel file", type=["csv", "xlsx"]) classifier = models.load_model() if uploaded_file: df = data.read_data(uploaded_file) if df is not None: st.write("✅ File Uploaded Successfully!") column = list(df.columns) column_with_empty = [""] + column text_to_analyze = st.selectbox("Select text column", column_with_empty) if text_to_analyze in df.columns: text_column = text_to_analyze df = models.analyze_sentiments(df, text_column, classifier) data.visualize_data(df, st) st.subheader("Processed Data Preview") st.dataframe(df.head()) st.download_button("Download Results", df.to_csv(index=False).encode('utf-8'), "sentiment_results.csv", "text/csv") if __name__ == "__main__": main()