import pandas as pd import os import sys src_directory = os.path.abspath(os.path.join(os.path.dirname(__file__), "../..", "backend")) sys.path.append(src_directory) from utils import logger file_path = "./world_population.csv" def process_data(): try: logger.log("I'm going to read the csv") data_frame = pd.read_csv(file_path) logger.log("I'm reading the csv") return data_frame except Exception as e : logger.log("I couldn't read the file") return f"Unable to read the file {e}" def display_continents(dataframe): continents = dataframe['Continent'].unique() logger.log("Displaying the list of continents in the data") continents_df = pd.DataFrame(continents, columns=["Continent"]) return continents_df def display_countries(dataframe): countries = dataframe['Country'].values countries_df = pd.DataFrame(countries, columns=["Country"]) logger.log("Displaying the list of countries in the data") return countries_df def continent_stat(dataframe, attribute="Population", stat_type="highest"): try: if 'Continent' not in dataframe.columns or attribute not in dataframe.columns: return ValueError(f"Dataframe must contain 'Continent' and '{attribute}' columns.") continent_stats = dataframe.groupby('Continent')[attribute].agg(total_attribute='sum') if stat_type == "highest": continent = continent_stats.idxmax().item() value = continent_stats.max().item() logger.log(f"Displaying the continent with the highest {attribute}: {continent} with {attribute} {value}") elif stat_type == "lowest": continent = continent_stats.idxmin().item() value = continent_stats.min().item() logger.log(f"Displaying the continent with the lowest {attribute}: {continent} with {attribute} {value}") else: raise ValueError("Invalid stat_type. Use 'highest' or 'lowest'.") result = {attribute : {continent: value}} return result except Exception as e: logger.log(f"Error in continent_stat: {str(e)}") return {"error": str(e)} def country_stat(dataframe, attribute : str = "Population", stat_type :str = "highest"): try : if stat_type.lower() == "highest": index= dataframe[attribute].idxmax() elif stat_type.lower() == "lowest": index= dataframe[attribute].idxmin() country = dataframe['Country'][index] requested_attribute = dataframe[attribute][index] result = {attribute:{country:requested_attribute.item()}} logger.log(f"Displaying the country with {stat_type} {attribute} in the data") return result except Exception as e: return f"Unable to fetch the data. Error {e}" def get_continent_wise_stat(data_frame, attribute): if "Continent" in data_frame.columns and "Population" in data_frame.columns: continent_data = data_frame.groupby("Continent")[attribute].sum().reset_index() return continent_data.to_dict() def get_country_wise_stat(data_frame, country, attribute): country_df = data_frame[data_frame["Country"]== country] data = country_df[attribute].item() result = {country:{attribute:data}} return result