Spaces:
Sleeping
Sleeping
File size: 20,358 Bytes
35048bb 8e28b37 87a5a35 25d153a d7977f2 b7c0cc3 25d153a d7977f2 25d153a d7977f2 25d153a d7977f2 25d153a d7977f2 b7c0cc3 25d153a d7977f2 25d153a 87a5a35 8e28b37 e268015 8e28b37 e268015 d7977f2 0c4e22a d7977f2 8e28b37 e268015 2a95d16 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 e268015 8e28b37 9b0a748 8b2f013 36e82c7 d071708 19ccf2f 8e28b37 42e9573 8e28b37 36e82c7 3e49a70 8b2f013 3e49a70 8b2f013 3e49a70 8b2f013 19ccf2f 8e28b37 45694be 56cd3ce 45694be 19ccf2f 5463029 d7977f2 5463029 d7977f2 8e28b37 b2baec4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
#
# Copyright 2023 Venafi, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import requests
import json
import pandas as pd
import numpy as np
import datetime
import io
import matplotlib.pyplot as plt
import openai
import plotly
import gradio as gr
# Initiate functions to be defined with API key input.
data_structure_overview = ''
data_relationships_overview = ''
fig =''
output_string = ''
def prompt_analyze_reporting(prompt, passed_args):
data_structure_overview = passed_args['data_structure_overview']
data_relationships_overview = passed_args['data_relationships_overview']
passed_args['fig'] = ''
output = openai.chat.completions.create(model="gpt-3.5-turbo",temperature = 0.0, messages=[{"role": "user", "content":
data_structure_overview},
{"role": "user", "content":
data_relationships_overview},{"role": "user", "content":
f"""Do not attempt to use .csv files in your code."""},
{"role": "user", "content":
f"""Only use plotly to output charts, graphs, or figures. Do not use matplotlib or other charting libraries. Name the chart object as 'fig' but do not show it"""},
{"role": "user", "content":
f"""Create a python script to: {prompt}"""}
])
parsed_response = output.choices[0].message.content.strip().split('```python')[len(output.choices[0].message.content.strip().split('```python')) -1 ].split('```')[0]
exec(parsed_response,globals(),passed_args)
fig = passed_args['fig']
return fig
def prompt_analyze_questions(prompt, passed_args):
data_structure_overview = passed_args['data_structure_overview']
data_relationships_overview = passed_args['data_relationships_overview']
passed_args['output_string']=''
output = openai.chat.completions.create(model="gpt-3.5-turbo",temperature = 0.0, messages=[{"role": "user", "content":
data_structure_overview},
{"role": "user", "content":
data_relationships_overview},{"role": "user", "content":
f"""Do not attempt to use .csv files in your code."""},
{"role": "user", "content":
f"""Do not attempt to create charts or visualize the question with graphics. Only provide string responses."""},
{"role": "user", "content":
f"""If you are asked to create visualizations or graphs, create a python script to store a string variable named output_string with the text 'Sorry, I cannot create reporting, select 'Add Reporting' to create reports."""},
{"role": "user", "content":
f"""Create a python script to: {prompt}"""},
{"role": "user", "content":
f"""Store the final response as a string variable named output_string"""}
])
parsed_response = output.choices[0].message.content.strip().split('```python')[len(output.choices[0].message.content.strip().split('```python')) -1 ].split('```')[0]
exec(parsed_response,globals(),passed_args)
output_string = passed_args['output_string']
return output_string
# Data Retrieval
# Some API calls may fail if customers haven't fully configured their environment
def getData(tlspc_api_key, openai_api_key):
# Store OpenAI API Key
openai.api_key = openai_api_key
# Create dictionary for adding variables
dfs = {}
# Get Cert Requests
def getCertRequests():
currentPage = 0
cert_requests_url = "https://api.venafi.cloud/outagedetection/v1/certificaterequestssearch"
headers = {
"accept": "application/json",
"tppl-api-key": tlspc_api_key}
payload = {"paging": {
"pageNumber": 1,
"pageSize": 1000}}
response = requests.post(url=cert_requests_url, headers=headers, json=payload)
if (response.status_code != 200):
raise Exception('Error retrieving certificate requests:' + "\n" + response.text + "\n=============\n")
data = response.json()
cert_requests = data['certificateRequests']
while data['numFound'] > (currentPage * 1000):
currentPage += 1
# print('Getting page ' + str(currentPage) + ': Number remaining - ' + str(
# data['numFound'] - currentPage * 1000))
payload['paging']['pageNumber'] = currentPage
response = requests.post(url=cert_requests_url, headers=headers, json=payload)
data = response.json()
cert_requests += data['certificateRequests']
return cert_requests
try:
cert_requests_json = getCertRequests()
certificate_requests_df = pd.json_normalize(cert_requests_json).convert_dtypes()
certificate_requests_df.rename(columns = {'id':'cert_request_id', 'creationDate':'cert_request_creationDate'}, inplace = True)
certificate_requests_df.drop(['companyId'],axis=1,inplace=True)
dfs['certificate_requests_df'] = certificate_requests_df
except:
pass
# Certificate inventory
cert_url = "https://api.venafi.cloud/outagedetection/v1/certificatesearch?ownershipTree=true&excludeSupersededInstances=false"
def getCerts():
currentPage = 0
payload = {
"paging":
{ "pageNumber": currentPage }}
headers = {
"accept": "application/json",
"tppl-api-key": tlspc_api_key}
response = requests.post(url=cert_url, headers=headers,json=payload)
if(response.status_code != 200):
raise Exception('Error retrieving certificates:' + "\n" + response.text + "\n=============\n")
data = response.json()
certs = data['certificates']
while data['count'] >= 1:
currentPage += 1
payload['paging']['pageNumber'] = currentPage
response = requests.post(url=cert_url, headers=headers,json=payload)
data = response.json()
certs += data['certificates']
return certs
try:
certs_json = getCerts()
certificates_df = pd.json_normalize(certs_json).convert_dtypes()
certificates_df.rename(columns = {'id':'certificateId'}, inplace = True)
dfs['certificates_df'] = certificates_df
except Exception:
pass
# Application Data and Formatting
application_url = "https://api.venafi.cloud/outagedetection/v1/applications"
headers = {
"accept": "application/json",
"tppl-api-key": tlspc_api_key
}
try:
application_response = requests.get(application_url, headers=headers)
application_df = pd.json_normalize(application_response.json()['applications']).convert_dtypes()
cols = ['id',
'name',
'description',
'fullyQualifiedDomainNames',
'ipRanges',
'ports',
'modificationDate',
'creationDate','ownership.owningUsers',
'ownership.owningTeams']
for c in cols:
df_cols = application_df.columns
if c not in df_cols:
application_df[c] = np.nan
application_df_2 = application_df[['id',
'name',
'description',
'fullyQualifiedDomainNames',
'ipRanges',
'ports',
'modificationDate',
'creationDate','ownership.owningUsers',
'ownership.owningTeams']]
# Flatten application owners and re-merge
application_owners = pd.json_normalize(application_response.json()['applications'],
record_path = ['ownerIdsAndTypes'],
meta = ['id']).convert_dtypes()
applications_df = pd.merge(application_df_2, application_owners, left_on = 'id', right_on = 'id')
applications_df.rename(columns = {'id':'application_id',
'creationDate':'application_creationDate',
'modificationDate':'application_modificationDate'}, inplace = True)
dfs['applications_df'] = applications_df
except Exception:
pass
# User Data
users_url = "https://api.venafi.cloud/v1/users"
headers = {
"accept": "application/json",
"tppl-api-key": tlspc_api_key
}
try:
users_response = requests.get(users_url, headers=headers)
users_df = pd.json_normalize(users_response.json()['users']).convert_dtypes()
users_df.rename(columns = {'id':'user_id'}, inplace = True)
users_df.drop(['companyId'],axis=1,inplace=True)
dfs['users_df'] = users_df
except Exception:
pass
# Teams Data
teams_url = "https://api.venafi.cloud/v1/teams"
headers = {
"accept": "application/json",
"tppl-api-key": tlspc_api_key
}
try:
teams_response = requests.get(teams_url, headers=headers)
teams_df = pd.json_normalize(teams_response.json()['teams']).convert_dtypes()
teams_df.rename(columns = {'id':'team_id',
'modificationDate':'teams_modificationDate'}, inplace = True)
teams_df.drop(['companyId'],axis=1,inplace=True)
dfs['teams_df'] = teams_df
except Exception:
pass
# Machines Data
machines_url = "https://api.venafi.cloud/v1/machines"
headers = {
"accept": "application/json",
"tppl-api-key": tlspc_api_key
}
try:
machines_response = requests.get(machines_url, headers=headers)
machines_df = pd.json_normalize(machines_response.json()['machines']).convert_dtypes()
machines_df.rename(columns = {'id':'machine_id',
'creationDate':'machine_creationDate',
'modificationDate':'machine_modificationDate'}, inplace = True)
machines_df.drop(['companyId'],axis=1,inplace=True)
dfs['machines_df'] = machines_df
except Exception:
pass
# Machine Identities Data
machine_identities_url = "https://api.venafi.cloud/v1/machineidentities"
headers = {
"accept": "application/json",
"tppl-api-key": tlspc_api_key
}
try:
machine_identities_response = requests.get(machine_identities_url, headers=headers)
machine_identities_df = pd.json_normalize(machine_identities_response.json()['machineIdentities']).convert_dtypes().iloc[:,:7]
machine_identities_df.rename(columns = {'machineId':'machine_id',
'id':'machine_identity_id',
'creationDate':'machine_identity_creationDate',
'modificationDate':'machine_identities_modificationDate'}, inplace = True)
machine_identities_df.drop(['companyId'],axis=1,inplace=True)
dfs['machine_identities_df'] = machine_identities_df
except Exception:
pass
# Issuing Templates
issuing_template_url = "https://api.venafi.cloud/v1/certificateissuingtemplates"
headers = {
"accept": "application/json",
"tppl-api-key": tlspc_api_key
}
try:
issuing_template_response = requests.get(issuing_template_url, headers=headers)
issuing_templates_df = pd.json_normalize(issuing_template_response.json()['certificateIssuingTemplates']).convert_dtypes()
issuing_templates_df.rename(columns = {'id':'issuing_template_id',
'creationDate':'issuing_template_creationDate'}, inplace = True)
issuing_templates_df.drop(['companyId'],axis=1,inplace=True)
dfs['issuing_templates_df'] = issuing_templates_df
except Exception:
pass
# Remove dictionary objects that aren't dataframes
def dataframe_filtering(pair):
key, value = pair
if isinstance(value, pd.DataFrame):
return True
else:
return False
dfs = dict(filter(dataframe_filtering, dfs.items()))
# Prompt Engineering
# Get data structure for each dataframe to be passed in initial prompt
dict_data_types = {}
for i in dfs.keys():
dict_data_types[i] = dfs[i].dtypes.apply(lambda x: x.name).to_dict()
data_structure_overview = 'I have multiple python pandas dataframes.'
for i in dict_data_types:
data_structure_overview += str('\nOne is named '
+ i +
' and contains ' +
i.split('df')[0].replace('_',' ') +
' information and has the following structure: '
+ str(dict_data_types[i]))
# Define the relationships of the dataframes to eachother
data_relationships_overview = "The dataframes relate to eachother in the following manner:"
if 'users_df' in dfs.keys() and 'applications_df' in dfs.keys():
data_relationships_overview += "/nThe column values in the 'user_id' column in users_df match the column values in the 'ownerId' column in application_df."
if 'teams_df' in dfs.keys() and 'machines_df' in dfs.keys():
data_relationships_overview += "/nThe column values in the 'team_id' column in teams_df match the column values in the 'owningTeamId' column in machines_df."
if 'certificate_requests_df' in dfs.keys() and 'users_df' in dfs.keys():
data_relationships_overview += "/nThe column values in the 'certificateOwnerUserId' column in cert_requests_df match the column values in the 'user_id' column in users_df."
if 'certificate_requests_df' in dfs.keys() and 'issuing_templates_df' in dfs.keys():
data_relationships_overview += "/nThe column values in the 'certificateIssuingTemplateId' column in cert_requests_df match the column values in the 'issuing_template_id' column in issuing_templates_df."
if 'machine_identities_df' in dfs.keys() and 'certificates_df' in dfs.keys():
data_relationships_overview += "/nThe column values in the 'certificateId' column in machine_identities_df match the column values in the 'certificateId' column in certificates_df."
if 'machine_identities_df' in dfs.keys() and 'machines_df' in dfs.keys():
data_relationships_overview += "/nThe column values in the 'machine_id' column in machine_identities_df match the column values in the 'machine_id' column in machines_df."
# If the data relationship overview is blank, just use a '' to avoid confusing the LLM
if data_relationships_overview == "The dataframes relate to eachother in the following manner:":
data_relationships_overview = ''
dfs['data_structure_overview'] = data_structure_overview
dfs['data_relationships_overview'] = data_relationships_overview
passed_args = dfs
return 'Data successfully loaded!', passed_args
# User facing application
with gr.Blocks(theme='aliabid94/new-theme') as demo:
#gr.Image('https://design.venafi.com/dist/svg/logos/venafi/logo-venafi-combo.svg', height = 50, width = 200,
gr.Image('V Experimental.svg', height=50, width=225,
show_share_button = False, show_download_button = False, show_label = False, container=False)
gr.Markdown("**Vikram Explorer** is an entirely new way to get answers and insights to solve machine identity management problems. Release of this opensource project under Apache 2.0 license is part of Venafi Athena for Community initiatives.")
with gr.Tab('Get Started!'):
gr.Markdown("""
This is an experimental opensource project. It combines TLS Protect Cloud’s modern APIs and data with the intelligence of OpenAI ChatGPT to answer questions and give new insights. The project uses in-memory data analysis and on-the-fly AI code generation to answer questions, and keep data outside of OpenAI. At just over 300 lines of code, it's simplicity shows the future potential for AI.
To get started, navigate to the API Keys tab. This will connect to your TLS Protect Cloud and OpenAI accounts.
Signup for TLS Protect Cloud at [venafi.com/signup](https://venafi.com/signup).
Use of this project either when run locally in your environment or on Hugging Face may introduce risks. Running this project accesses data from your TLS Protect Cloud account. While this project does not store your TLS Protect Cloud data or send that data to OpenAI, the prompts entered are sent to OpenAI for Python code generation.
As with every opensource project, application, or online service that uses your API keys, you are strongly recommended to rotate your API keys after use.
Venafi does not track use of this project on Hugging Face or collect or process any data of project users.
""")
with gr.Tab("API Keys"):
tlspc_api_key = gr.Textbox(label = 'Please provide your TLS Protect Cloud API Key:', type = 'password')
openai_api_key = gr.Textbox(label = 'Please provide your OpenAI API Key:', type = 'password', placeholder = 'Note: To use the OpenAI API, you need a paid account')
api_key_output = gr.Textbox(label = 'Result')
load_button = gr.Button('Load TLS Protect Cloud Data')
with gr.Tab("Answer Questions"):
#prompt_tlspc_key = gr.Textbox(label = 'Please provide your TLS Protect Cloud API Key:')
prompt_questions = gr.Textbox(label = 'Input prompt here:', placeholder = "Try something like 'What is the name of the issuing template that has been used to request the most certificates?'")
text_output = gr.Textbox(label = 'Response:')
text_button = gr.Button("Submit")
with gr.Tab("Visualize Answers"):
prompt_reporting = gr.Textbox(label = 'Input prompt here:', placeholder = "Try something like 'Plot a line chart of certificate issuances over time'")
chart_output = gr.Plot(label = 'Output:')
chart_button = gr.Button("Submit")
gr.Markdown("<sup><sub>Reminder: This is an experimental project to test new capabilities. Take care and understand risks of using API keys and accessing data especially if running from Hugging Face. Rotate keys after use.</sup></sub>")
passed_args = gr.State([])
text_button.click(prompt_analyze_questions, inputs=[prompt_questions,passed_args], outputs=text_output)
chart_button.click(prompt_analyze_reporting, inputs=[prompt_reporting,passed_args], outputs=chart_output)
load_button.click(getData, inputs=[tlspc_api_key, openai_api_key], outputs=[api_key_output,passed_args])
demo.launch(show_error = True) |