Spaces:
Sleeping
Sleeping
# | |
# Copyright 2023 Venafi, Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import os | |
import requests | |
import json | |
import pandas as pd | |
import numpy as np | |
import datetime | |
import io | |
import matplotlib.pyplot as plt | |
import openai | |
import plotly | |
import gradio as gr | |
# Initiate functions to be defined with API key input. | |
data_structure_overview = '' | |
data_relationships_overview = '' | |
fig ='' | |
output_string = '' | |
def prompt_analyze_reporting(prompt): | |
output = openai.ChatCompletion.create(model="gpt-3.5-turbo",temperature = 0.0, messages=[{"role": "user", "content": | |
data_structure_overview}, | |
{"role": "user", "content": | |
data_relationships_overview},{"role": "user", "content": | |
f"""Do not attempt to use .csv files in your code."""}, | |
{"role": "user", "content": | |
f"""Only use plotly to output charts, graphs, or figures. Do not use matplotlib or other charting libraries. Name the chart object as 'fig'"""}, | |
{"role": "user", "content": | |
f"""Create a python script to: {prompt}"""} | |
]) | |
global parsed_response | |
parsed_response = output.choices[0].message.content.strip().split('```python')[len(output.choices[0].message.content.strip().split('```python')) -1 ].split('```')[0] | |
parsed_response_global = f"""global fig | |
global string | |
{parsed_response}""" | |
exec(parsed_response_global) | |
return fig | |
def prompt_analyze_questions(prompt): | |
output = openai.ChatCompletion.create(model="gpt-3.5-turbo",temperature = 0.0, messages=[{"role": "user", "content": | |
data_structure_overview}, | |
{"role": "user", "content": | |
data_relationships_overview},{"role": "user", "content": | |
f"""Do not attempt to use .csv files in your code."""}, | |
{"role": "user", "content": | |
f"""Do not attempt to create charts or visualize the question with graphics. Only provide string responses."""}, | |
{"role": "user", "content": | |
f"""If you are asked to create visualizations or graphs, create a python script to store a string variable named output_string with the text 'Sorry, I cannot create reporting, select 'Add Reporting' to create reports."""}, | |
{"role": "user", "content": | |
f"""Create a python script to: {prompt}"""}, | |
{"role": "user", "content": | |
f"""Store the final response as a string variable named output_string"""} | |
]) | |
global parsed_response | |
parsed_response = output.choices[0].message.content.strip().split('```python')[len(output.choices[0].message.content.strip().split('```python')) -1 ].split('```')[0] | |
parsed_response_global = f"""global fig | |
global string | |
{parsed_response} | |
globals().update(locals())""" | |
exec(parsed_response_global) | |
return output_string | |
# Data Retrieval | |
def getData(tlspc_api_key, openai_api_key): | |
try: | |
# Store OpenAI API Key | |
openai.api_key = openai_api_key | |
# Get Certificate Data | |
cert_url = "https://api.venafi.cloud/outagedetection/v1/certificates?ownershipTree=false&excludeSupersededInstances=false&limit=10000" | |
headers = { | |
"accept": "application/json", | |
"tppl-api-key": tlspc_api_key | |
} | |
cert_response = requests.get(cert_url, headers=headers) | |
certs_df = pd.json_normalize(cert_response.json()['certificates']).convert_dtypes() | |
certs_df.rename(columns = {'id':'certificateId'}, inplace = True) | |
certs_df.drop(['companyId'],axis=1,inplace=True) | |
certs_df['validityStart'] = pd.to_datetime(certs_df['validityStart']).dt.date | |
certs_df['validityEnd'] = pd.to_datetime(certs_df['validityEnd']).dt.date | |
# Application Data and Formatting | |
application_url = "https://api.venafi.cloud/outagedetection/v1/applications" | |
headers = { | |
"accept": "application/json", | |
"tppl-api-key": tlspc_api_key | |
} | |
application_response = requests.get(application_url, headers=headers) | |
application_df = pd.json_normalize(application_response.json()['applications']).convert_dtypes() | |
application_df_2 = application_df[['id', | |
'name', | |
'description', | |
'fullyQualifiedDomainNames', | |
'ipRanges', | |
'ports', | |
'modificationDate', | |
'creationDate','ownership.owningUsers', | |
'ownership.owningTeams']] | |
# Flatten application owners and re-merge | |
application_owners = pd.json_normalize(application_response.json()['applications'], | |
record_path = ['ownerIdsAndTypes'], | |
meta = ['id']).convert_dtypes() | |
application_df = pd.merge(application_df_2, application_owners, left_on = 'id', right_on = 'id') | |
application_df.rename(columns = {'id':'application_id', | |
'creationDate':'application_creationDate', | |
'modificationDate':'application_modificationDate'}, inplace = True) | |
# User Data | |
users_url = "https://api.venafi.cloud/v1/users" | |
headers = { | |
"accept": "application/json", | |
"tppl-api-key": tlspc_api_key | |
} | |
users_response = requests.get(users_url, headers=headers) | |
users_df = pd.json_normalize(users_response.json()['users']).convert_dtypes() | |
users_df.rename(columns = {'id':'user_id'}, inplace = True) | |
users_df.drop(['companyId'],axis=1,inplace=True) | |
# Teams Data | |
teams_url = "https://api.venafi.cloud/v1/teams" | |
headers = { | |
"accept": "application/json", | |
"tppl-api-key": tlspc_api_key | |
} | |
teams_response = requests.get(teams_url, headers=headers) | |
teams_df = pd.json_normalize(teams_response.json()['teams']).convert_dtypes() | |
teams_df.rename(columns = {'id':'team_id', | |
'modificationDate':'teams_modificationDate'}, inplace = True) | |
teams_df.drop(['companyId'],axis=1,inplace=True) | |
# Machines Data | |
machines_url = "https://api.venafi.cloud/v1/machines" | |
headers = { | |
"accept": "application/json", | |
"tppl-api-key": tlspc_api_key | |
} | |
machines_response = requests.get(machines_url, headers=headers) | |
machines_df = pd.json_normalize(machines_response.json()['machines']).convert_dtypes() | |
machines_df.rename(columns = {'id':'machine_id', | |
'creationDate':'machine_creationDate', | |
'modificationDate':'machine_modificationDate'}, inplace = True) | |
machines_df.drop(['companyId'],axis=1,inplace=True) | |
# Machine Identities Data | |
machine_identities_url = "https://api.venafi.cloud/v1/machineidentities" | |
headers = { | |
"accept": "application/json", | |
"tppl-api-key": tlspc_api_key | |
} | |
machine_identities_response = requests.get(machine_identities_url, headers=headers) | |
machine_identities_df = pd.json_normalize(machine_identities_response.json()['machineIdentities']).convert_dtypes().iloc[:,:7] | |
machine_identities_df.rename(columns = {'machineId':'machine_id', | |
'id':'machine_identity_id', | |
'creationDate':'machine_identity_creationDate', | |
'modificationDate':'machine_identities_modificationDate'}, inplace = True) | |
machine_identities_df.drop(['companyId'],axis=1,inplace=True) | |
# Certificate Requests | |
def getCertRequests(): | |
currentPage = 0 | |
cert_requests_url = "https://api.venafi.cloud/outagedetection/v1/certificaterequestssearch" | |
headers = { | |
"accept": "application/json", | |
"tppl-api-key": tlspc_api_key} | |
payload = { "paging": { | |
"pageNumber": 1, | |
"pageSize": 1000}} | |
response = requests.post(url=cert_requests_url, headers=headers,json=payload) | |
if(response.status_code != 200): | |
raise Exception('Error retrieving certificate requests:' + "\n" + response.text + "\n=============\n") | |
data = response.json() | |
cert_requests = data['certificateRequests'] | |
while data['numFound'] > (currentPage * 1000): | |
currentPage+=1 | |
print('Getting page ' + str(currentPage) + ': Number remaining - ' + str(data['numFound'] - currentPage*1000)) | |
payload['paging']['pageNumber'] = currentPage | |
response = requests.post(url=cert_requests_url, headers=headers,json=payload) | |
data = response.json() | |
cert_requests += data['certificateRequests'] | |
return cert_requests | |
cert_requests_json = getCertRequests() | |
cert_requests_df = pd.json_normalize(cert_requests_json).convert_dtypes() | |
cert_requests_df.rename(columns = {'id':'cert_request_id', 'creationDate':'cert_request_creationDate'}, inplace = True) | |
cert_requests_df.drop(['companyId'],axis=1,inplace=True) | |
# Issuing Templates | |
issuing_template_url = "https://api.venafi.cloud/v1/certificateissuingtemplates" | |
headers = { | |
"accept": "application/json", | |
"tppl-api-key": tlspc_api_key | |
} | |
issuing_template_response = requests.get(issuing_template_url, headers=headers) | |
issuing_templates_df = pd.json_normalize(issuing_template_response.json()['certificateIssuingTemplates']).convert_dtypes() | |
issuing_templates_df.rename(columns = {'id':'issuing_template_id', | |
'creationDate':'issuing_template_creationDate'}, inplace = True) | |
issuing_templates_df.drop(['companyId'],axis=1,inplace=True) | |
# Prompt Engineering | |
# Get data structure for each dataframe to be passed in initial prompt | |
users_data_description = users_df.dtypes.apply(lambda x: x.name).to_dict() | |
application_data_description = application_df.dtypes.apply(lambda x: x.name).to_dict() | |
certificate_data_description = certs_df.dtypes.apply(lambda x: x.name).to_dict() | |
teams_data_description = teams_df.dtypes.apply(lambda x: x.name).to_dict() | |
machines_data_description = machines_df.dtypes.apply(lambda x: x.name).to_dict() | |
machine_identities_data_description = machine_identities_df.dtypes.apply(lambda x: x.name).to_dict() | |
cert_requests_data_description = cert_requests_df.dtypes.apply(lambda x: x.name).to_dict() | |
issuing_templates_data_description = issuing_templates_df.dtypes.apply(lambda x: x.name).to_dict() | |
data_structure_overview = f"""I have multiple python pandas dataframes. | |
One is named application_df which contains data on applications and has the following structure: {application_data_description}. | |
Another python pandas dataframe is named users_df and contains user information and has the following structure: {users_data_description}. | |
Another python pandas dataframe is named certs_df and contains certificate information and has the following structure: {certificate_data_description}. | |
Another python pandas dataframe is named teams_df and contains teams information and has the following structure: {teams_data_description}. | |
Another python pandas dataframe is named machines_df and contains machine information and has the following structure: {machines_data_description}. | |
Another python pandas dataframe is named machine_identities_df and contains machine identity information and has the following structure: {machine_identities_data_description}. | |
Another python pandas dataframe is named cert_requests_df and contains certificate request information and has the following structure: {cert_requests_data_description} | |
Another python pandas dataframe is named issuing_templates_df and contains issuing template information and has the following structure: {issuing_templates_data_description} | |
""" | |
data_relationships_overview = """The dataframes relate to eachother in the following manner. | |
The column values in the 'user_id' column in users_df match the column values in the 'ownerId' column in application_df. | |
The column values in the 'team_id' column in teams_df match the column values in the 'owningTeamId' column in machines_df. | |
The column values in the 'certificateOwnerUserId' column in cert_requests_df match the column values in the 'user_id' column in users_df. | |
The column values in the 'certificateIssuingTemplateId' column in cert_requests_df match the column values in the 'issuing_template_id' column in issuing_templates_df. | |
The column values in the 'certificateOwnerUserId' column in cert_requests_df match the column values in the 'user_id' column in users_df. | |
The column values in the 'certificateIssuingTemplateId' column in certs_request_df match the column values in the 'issuing_template_id' column in issuing_templates_df. | |
""" | |
# Store variables for use in other portions of the application | |
globals().update(locals()) | |
return 'Data successfully loaded!' | |
except: | |
return 'Error in loading data. Please try again.' | |
# User facing application | |
with gr.Blocks(theme='aliabid94/new-theme') as demo: | |
gr.Image('https://design.venafi.com/dist/svg/logos/venafi/logo-venafi-combo.svg', height = 50, width = 150, | |
show_share_button = False, show_download_button = False, show_label = False, container=False) | |
gr.Markdown("Get Answers to questions from your TLS Protect Cloud data or Generate Reporting with this Generative AI application from Venafi.") | |
with gr.Tab('Read Me'): | |
gr.Markdown(""" | |
# Welcome to Venafi Explorer! | |
This is an experimental generative AI application for the Venafi Control Plane. \ | |
It leverages Venafi's proprietary data capture technology in combination with the OpenAI API to use natural language to provide answers and insights surrounding your Venafi Control Plane environment.\ | |
Please note to use Venafi Explorer you will need to have both a TLS Protect Cloud API key (Try it for free at venafi.com/signup/) as well as an OpenAI API Key. \ | |
To get started, navigate to the 'API Keys' tab to input your API keys and ingest data from your TLS Protect Cloud environment. | |
""") | |
with gr.Tab("API Keys"): | |
tlspc_api_key = gr.Textbox(label = 'Please provide your TLS Protect Cloud API Key:', type = 'password') | |
openai_api_key = gr.Textbox(label = 'Please provide your OpenAI API Key:', type = 'password', placeholder = 'Note: To use the OpenAI API, you need a paid account') | |
api_key_output = gr.Textbox(label = 'Result') | |
load_button = gr.Button('Load TLS Protect Cloud Data') | |
with gr.Tab("Answer Questions"): | |
#prompt_tlspc_key = gr.Textbox(label = 'Please provide your TLS Protect Cloud API Key:') | |
prompt_questions = gr.Textbox(label = 'Input prompt here:', placeholder = "Try something like 'What is the name of the issuing template that has been used to request the most certificates?'") | |
text_output = gr.Textbox(label = 'Response:') | |
text_button = gr.Button("Submit") | |
with gr.Tab("Create Graphs"): | |
prompt_reporting = gr.Textbox(label = 'Input prompt here:', placeholder = "Try something like 'Plot a line chart of certificate issuances over time'") | |
chart_output = gr.Plot(label = 'Output:') | |
chart_button = gr.Button("Submit") | |
text_button.click(prompt_analyze_questions, inputs=prompt_questions, outputs=text_output) | |
chart_button.click(prompt_analyze_reporting, inputs=prompt_reporting, outputs=chart_output) | |
load_button.click(getData, inputs=[tlspc_api_key, openai_api_key], outputs=api_key_output) | |
demo.launch() |