Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
app.py
CHANGED
@@ -35,5 +35,7 @@ def recommend(user_id):
|
|
35 |
ground_truth_items, recommendations = utils.predict(lightGCNModel, device, data, num_users, num_items, user_id, train_edge_label_index, k=5)
|
36 |
return ground_truth_items, recommendations
|
37 |
|
|
|
|
|
38 |
iface = gr.Interface(fn=recommend, inputs="number", outputs=["text", "text"])
|
39 |
iface.launch()
|
|
|
35 |
ground_truth_items, recommendations = utils.predict(lightGCNModel, device, data, num_users, num_items, user_id, train_edge_label_index, k=5)
|
36 |
return ground_truth_items, recommendations
|
37 |
|
38 |
+
|
39 |
+
|
40 |
iface = gr.Interface(fn=recommend, inputs="number", outputs=["text", "text"])
|
41 |
iface.launch()
|
utils.py
CHANGED
@@ -48,6 +48,7 @@ def predict(model, device, data, num_users, num_items, user_id, train_edge_label
|
|
48 |
|
49 |
ground_truth_items = meta_dataframe[meta_dataframe['asin'].isin(ground_truth_asins)].head(5)
|
50 |
|
|
|
51 |
|
52 |
_, top_ratings = torch.topk(user_rates, k)
|
53 |
|
@@ -57,4 +58,4 @@ def predict(model, device, data, num_users, num_items, user_id, train_edge_label
|
|
57 |
recommended_item = meta_dataframe[meta_dataframe['asin'] == asin_of_item]['title'].values
|
58 |
recommended_items.append(recommended_item)
|
59 |
|
60 |
-
return ground_truth_items
|
|
|
48 |
|
49 |
ground_truth_items = meta_dataframe[meta_dataframe['asin'].isin(ground_truth_asins)].head(5)
|
50 |
|
51 |
+
# print(f"Ground truth items: {ground_truth_items['title'].values.tolist()}")
|
52 |
|
53 |
_, top_ratings = torch.topk(user_rates, k)
|
54 |
|
|
|
58 |
recommended_item = meta_dataframe[meta_dataframe['asin'] == asin_of_item]['title'].values
|
59 |
recommended_items.append(recommended_item)
|
60 |
|
61 |
+
return ground_truth_items, recommended_items
|