File size: 4,478 Bytes
51e7097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import cv2
import numpy as np
import gradio as gr
import random

def apply_cartoon_filter(frame):
    """Cartoon Filter"""
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    gray = cv2.medianBlur(gray, 5)
    edges = cv2.adaptiveThreshold(gray, 255, 
                                   cv2.ADAPTIVE_THRESH_MEAN_C, 
                                   cv2.THRESH_BINARY, 11, 7)
    color = cv2.bilateralFilter(frame, 9, 300, 300)
    cartoon = cv2.bitwise_and(color, color, mask=edges)
    return cartoon

def apply_neon_effect(frame):
    """Neon Light Filter"""
    # Intensify colors
    frame_neon = frame.copy().astype(np.float32)
    frame_neon = np.clip(frame_neon * 1.5, 0, 255).astype(np.uint8)
    
    # Highlight edges
    edges = cv2.Canny(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), 100, 200)
    edges_colored = cv2.applyColorMap(edges, cv2.COLORMAP_JET)
    
    # Blend
    result = cv2.addWeighted(frame_neon, 0.7, edges_colored, 0.3, 0)
    return result

def apply_pixelate_effect(frame, pixel_size=15):
    """Pixelate Effect"""
    h, w = frame.shape[:2]
    small = cv2.resize(frame, (w//pixel_size, h//pixel_size), interpolation=cv2.INTER_LINEAR)
    return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST)

def apply_glitch_effect(frame):
    """Glitch Filter"""
    glitched = frame.copy()
    
    # Randomly shift color channels
    glitched[:, :, 0] = np.roll(glitched[:, :, 0], random.randint(-50, 50), axis=0)
    glitched[:, :, 1] = np.roll(glitched[:, :, 1], random.randint(-50, 50), axis=1)
    
    # Add noise to random areas
    noise = np.random.randint(0, 255, frame.shape, dtype=np.uint8)
    glitched = cv2.addWeighted(glitched, 0.7, noise, 0.3, 0)
    
    return glitched

def apply_watercolor_effect(frame):
    """Watercolor Effect"""
    # Smooth using bilateral filtering
    frame_soft = cv2.bilateralFilter(frame, 9, 75, 75)
    
    # Highlight edges
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    edges = cv2.Canny(gray, 100, 200)
    edges = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
    
    # Blend
    result = cv2.addWeighted(frame_soft, 0.8, edges, 0.2, 0)
    return result

def apply_upscale(frame, scale_factor=1.5):
    """

    Upscaling Effect

    

    Args:

        frame (numpy.ndarray): Input Image

        scale_factor (float): Scaling Factor (default 1.5)

    

    Returns:

        numpy.ndarray: Upscaled Image

    """
    interpolation_methods = [
        cv2.INTER_CUBIC,     
        cv2.INTER_LANCZOS4   
    ]
    
    method = random.choice(interpolation_methods)
    
    height, width = frame.shape[:2]
    new_height = int(height * scale_factor)
    new_width = int(width * scale_factor)
    
    upscaled = cv2.resize(frame, (new_width, new_height), interpolation=method)
    
    kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
    sharpened = cv2.filter2D(upscaled, -1, kernel)
    
    return sharpened

def apply_filter(filter_type, input_image=None):
    if input_image is None:
        cap = cv2.VideoCapture(0)
        ret, frame = cap.read()
        cap.release()
        if not ret:
            return "Failed to capture image from webcam"
    else:
        frame = input_image

    if filter_type == "Upscale":
        return apply_upscale(frame)
    elif filter_type == "Cartoon":
        return apply_cartoon_filter(frame)
    elif filter_type == "Neon Light":
        return apply_neon_effect(frame)
    elif filter_type == "Pixelate":
        return apply_pixelate_effect(frame)
    elif filter_type == "Glitch":
        return apply_glitch_effect(frame)
    elif filter_type == "Watercolor":
        return apply_watercolor_effect(frame)

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown('# <p align="center"> OpenCV Image Effects </p>')

    # Filter options
    filter_type = gr.Dropdown(
        label="Select Filter",
        choices=["Upscale","Cartoon", "Neon Light", "Pixelate", "Glitch", "Watercolor"],
        value="Upscale"
    )

    with gr.Row():
        input_image = gr.Image(label="Upload Image", type="numpy")
        output_image = gr.Image(label="Filtered Image")

    # Apply filter button
    apply_button = gr.Button("Apply Filter")

    # Apply filter function on button click
    apply_button.click(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image)

demo.launch()