Spaces:
Sleeping
Sleeping
File size: 4,478 Bytes
51e7097 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import cv2
import numpy as np
import gradio as gr
import random
def apply_cartoon_filter(frame):
"""Cartoon Filter"""
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 5)
edges = cv2.adaptiveThreshold(gray, 255,
cv2.ADAPTIVE_THRESH_MEAN_C,
cv2.THRESH_BINARY, 11, 7)
color = cv2.bilateralFilter(frame, 9, 300, 300)
cartoon = cv2.bitwise_and(color, color, mask=edges)
return cartoon
def apply_neon_effect(frame):
"""Neon Light Filter"""
# Intensify colors
frame_neon = frame.copy().astype(np.float32)
frame_neon = np.clip(frame_neon * 1.5, 0, 255).astype(np.uint8)
# Highlight edges
edges = cv2.Canny(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), 100, 200)
edges_colored = cv2.applyColorMap(edges, cv2.COLORMAP_JET)
# Blend
result = cv2.addWeighted(frame_neon, 0.7, edges_colored, 0.3, 0)
return result
def apply_pixelate_effect(frame, pixel_size=15):
"""Pixelate Effect"""
h, w = frame.shape[:2]
small = cv2.resize(frame, (w//pixel_size, h//pixel_size), interpolation=cv2.INTER_LINEAR)
return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST)
def apply_glitch_effect(frame):
"""Glitch Filter"""
glitched = frame.copy()
# Randomly shift color channels
glitched[:, :, 0] = np.roll(glitched[:, :, 0], random.randint(-50, 50), axis=0)
glitched[:, :, 1] = np.roll(glitched[:, :, 1], random.randint(-50, 50), axis=1)
# Add noise to random areas
noise = np.random.randint(0, 255, frame.shape, dtype=np.uint8)
glitched = cv2.addWeighted(glitched, 0.7, noise, 0.3, 0)
return glitched
def apply_watercolor_effect(frame):
"""Watercolor Effect"""
# Smooth using bilateral filtering
frame_soft = cv2.bilateralFilter(frame, 9, 75, 75)
# Highlight edges
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 100, 200)
edges = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
# Blend
result = cv2.addWeighted(frame_soft, 0.8, edges, 0.2, 0)
return result
def apply_upscale(frame, scale_factor=1.5):
"""
Upscaling Effect
Args:
frame (numpy.ndarray): Input Image
scale_factor (float): Scaling Factor (default 1.5)
Returns:
numpy.ndarray: Upscaled Image
"""
interpolation_methods = [
cv2.INTER_CUBIC,
cv2.INTER_LANCZOS4
]
method = random.choice(interpolation_methods)
height, width = frame.shape[:2]
new_height = int(height * scale_factor)
new_width = int(width * scale_factor)
upscaled = cv2.resize(frame, (new_width, new_height), interpolation=method)
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]])
sharpened = cv2.filter2D(upscaled, -1, kernel)
return sharpened
def apply_filter(filter_type, input_image=None):
if input_image is None:
cap = cv2.VideoCapture(0)
ret, frame = cap.read()
cap.release()
if not ret:
return "Failed to capture image from webcam"
else:
frame = input_image
if filter_type == "Upscale":
return apply_upscale(frame)
elif filter_type == "Cartoon":
return apply_cartoon_filter(frame)
elif filter_type == "Neon Light":
return apply_neon_effect(frame)
elif filter_type == "Pixelate":
return apply_pixelate_effect(frame)
elif filter_type == "Glitch":
return apply_glitch_effect(frame)
elif filter_type == "Watercolor":
return apply_watercolor_effect(frame)
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown('# <p align="center"> OpenCV Image Effects </p>')
# Filter options
filter_type = gr.Dropdown(
label="Select Filter",
choices=["Upscale","Cartoon", "Neon Light", "Pixelate", "Glitch", "Watercolor"],
value="Upscale"
)
with gr.Row():
input_image = gr.Image(label="Upload Image", type="numpy")
output_image = gr.Image(label="Filtered Image")
# Apply filter button
apply_button = gr.Button("Apply Filter")
# Apply filter function on button click
apply_button.click(fn=apply_filter, inputs=[filter_type, input_image], outputs=output_image)
demo.launch()
|