Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import datetime
|
4 |
+
|
5 |
+
# Load the Hugging Face model for weather prediction
|
6 |
+
model = pipeline("text-classification", model="nlptown/bert-base-multilingual-uncased-sentiment")
|
7 |
+
|
8 |
+
def predict_weather(description):
|
9 |
+
# Use the Hugging Face model to predict the weather sentiment
|
10 |
+
prediction = model(description)[0]
|
11 |
+
|
12 |
+
# Map the sentiment prediction to weather categories
|
13 |
+
if prediction['label'] == 'positive':
|
14 |
+
weather = 'Sunny'
|
15 |
+
elif prediction['label'] == 'negative':
|
16 |
+
weather = 'Rainy'
|
17 |
+
else:
|
18 |
+
weather = 'Neutral'
|
19 |
+
|
20 |
+
# Calculate tomorrow's date
|
21 |
+
tomorrow = datetime.date.today() + datetime.timedelta(days=1)
|
22 |
+
|
23 |
+
# Return the predicted weather and tomorrow's date
|
24 |
+
return weather, tomorrow
|
25 |
+
|
26 |
+
# Define the input field for the Gradio interface
|
27 |
+
description_input = gr.inputs.Textbox(label="Weather Description")
|
28 |
+
|
29 |
+
# Define the output fields for the Gradio interface
|
30 |
+
weather_output = gr.outputs.Textbox(label="Predicted Weather")
|
31 |
+
date_output = gr.outputs.Textbox(label="Tomorrow's Date")
|
32 |
+
|
33 |
+
# Create the Gradio interface
|
34 |
+
interface = gr.Interface(fn=predict_weather,
|
35 |
+
inputs=description_input,
|
36 |
+
outputs=[weather_output, date_output],
|
37 |
+
title="Tomorrow's Weather Prediction",
|
38 |
+
description="Predict tomorrow's weather based on description.")
|
39 |
+
|
40 |
+
# Launch the Gradio interface
|
41 |
+
interface.launch()
|