File size: 27,140 Bytes
3e0f6bf 883c203 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
import psutil
from transformers import (
AutoConfig,
T5ForConditionalGeneration,
MT5ForConditionalGeneration,
)
import torch
import time
import gradio as gr
from transformers import AutoTokenizer
import onnxruntime as ort
from transformers.modeling_outputs import (
Seq2SeqLMOutput,
BaseModelOutput,
)
import os
from pathlib import Path
from progress.bar import Bar
import operator
import functools
from onnxruntime import (
GraphOptimizationLevel,
InferenceSession,
SessionOptions,
ExecutionMode,
)
_auth_token = None
def set_auth_token(token):
"""Set the token which allows the user to authenticate to hugginface.co for downloading private models
Args:
token (Union[str, bool]): The token value to store. One of:
- an API key (from https://huggingface.co/organizations/ORGNAME/settings/token),
- a login token obtained by running `$ transformers-cli login`
- `True`, which tells transformers to use the login token stored in ~/.huggingface/token
Returns:
None
"""
global _auth_token
_auth_token = token
def get_auth_token():
"""Get the user-configurable auth token, which defaults to None
Returns:
auth_token (Optional[Union[str, bool]]) for authenticating with huggingface.co
"""
global _auth_token
return _auth_token
os.environ["OMP_NUM_THREADS"] = str(psutil.cpu_count(logical=True))
os.environ["OMP_WAIT_POLICY"] = "ACTIVE"
def get_onnx_runtime_sessions(
model_paths,
default: bool = True,
opt_level: int = 99,
parallel_exe_mode: bool = True,
n_threads: int = 0,
provider=[
"CPUExecutionProvider",
],
) -> InferenceSession:
"""
Optimizes the model
Args:
model_paths (List or Tuple of str) : the path to, in order:
path_to_encoder (str) : the path of input onnx encoder model.
path_to_decoder (str) : the path of input onnx decoder model.
path_to_initial_decoder (str) : the path of input initial onnx decoder model.
default : set this to true, ort will choose the best settings for your hardware.
(you can test out different settings for better results.)
opt_level (int) : sess_options.GraphOptimizationLevel param if set 1 uses 'ORT_ENABLE_BASIC',
2 for 'ORT_ENABLE_EXTENDED' and 99 for 'ORT_ENABLE_ALL',
default value is set to 99.
parallel_exe_mode (bool) : Sets the execution mode. Default is True (parallel).
n_threads (int) : Sets the number of threads used to parallelize the execution within nodes. Default is 0 to let onnxruntime choose
provider : execution providers list.
Returns:
encoder_session : encoder onnx InferenceSession
decoder_session : decoder onnx InferenceSession
decoder_sess_init : initial decoder onnx InferenceSession
"""
path_to_encoder, path_to_decoder, path_to_initial_decoder = model_paths
if default:
encoder_sess = InferenceSession(str(path_to_encoder))
decoder_sess = InferenceSession(str(path_to_decoder))
decoder_sess_init = InferenceSession(str(path_to_initial_decoder))
else:
# Few properties that might have an impact on performances
options = SessionOptions()
if opt_level == 1:
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_BASIC
elif opt_level == 2:
options.graph_optimization_level = (
GraphOptimizationLevel.ORT_ENABLE_EXTENDED
)
else:
assert opt_level == 99
options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
# set this true for better performance
if parallel_exe_mode == True:
options.execution_mode = ExecutionMode.ORT_PARALLEL
else:
options.execution_mode = ExecutionMode.ORT_SEQUENTIAL
options.intra_op_num_threads = n_threads
# options.inter_op_num_threads = 10
# options.enable_profiling = True
encoder_sess = InferenceSession(
str(path_to_encoder), options, providers=provider
)
decoder_sess = InferenceSession(
str(path_to_decoder), options, providers=provider
)
decoder_sess_init = InferenceSession(
str(path_to_initial_decoder), options, providers=provider
)
return encoder_sess, decoder_sess, decoder_sess_init
class DecoderWithLMhead(torch.nn.Module):
""" Creation of a class to combine the decoder and the lm head """
def __init__(self, decoder, lm_head, config):
super().__init__()
self.decoder = decoder
self.lm_head = lm_head
self.config = config
def forward(self, *inputs):
input_ids, attention_mask, encoder_hidden_states = inputs[:3]
list_pkv = inputs[3:]
past_key_values = tuple(list_pkv[i: i + 4]
for i in range(0, len(list_pkv), 4))
decoder_output = self.decoder(
input_ids=input_ids, # decoder_input_ids
encoder_attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
past_key_values=past_key_values,
)
lm_head_out = self.lm_head(
decoder_output[0] * (self.config.d_model ** -0.5))
return lm_head_out, decoder_output[1]
class T5Encoder(torch.nn.Module):
""" Creation of a class to output only the last hidden state from the encoder """
def __init__(self, encoder):
super().__init__()
self.encoder = encoder
def forward(self, *input, **kwargs):
return self.encoder(*input, **kwargs)[0]
class DecoderWithLMheadInitial(torch.nn.Module):
""" Creation of a class to combine the decoder and the lm head """
def __init__(self, decoder, lm_head, config):
super().__init__()
self.decoder = decoder
self.lm_head = lm_head
self.config = config
def forward(self, input_ids, attention_mask, encoder_hidden_states):
decoder_output = self.decoder(
input_ids=input_ids,
encoder_attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
)
return (
self.lm_head(decoder_output[0] * (self.config.d_model ** -0.5)),
decoder_output[1],
)
_folder = Path.cwd()
saved_models_path = _folder.joinpath("models")
Bar.check_tty = False
def create_t5_encoder_decoder(pretrained_version="t5-base"):
"""Generates an encoder and a decoder model with a language model head from a pretrained huggingface model
Args:
pretrained_version (str): Name of a pretrained model, or path to a pretrained / finetuned version of T5
Returns:
simplified_encoder: pytorch t5 encoder with a wrapper to output only the hidden states
decoder_with_lm_head: pytorch t5 decoder with a language modeling head
"""
if 'mt5' in pretrained_version:
model = MT5ForConditionalGeneration.from_pretrained(
pretrained_version, use_auth_token=get_auth_token())
else:
model = T5ForConditionalGeneration.from_pretrained(
pretrained_version, use_auth_token=get_auth_token())
return turn_model_into_encoder_decoder(model)
def turn_model_into_encoder_decoder(model):
encoder = model.encoder
decoder = model.decoder
lm_head = model.lm_head
decoder_with_lm_head = DecoderWithLMhead(decoder, lm_head, model.config)
simplified_encoder = T5Encoder(encoder)
decoder_with_lm_head_init = DecoderWithLMheadInitial(
decoder, lm_head, model.config)
return simplified_encoder, decoder_with_lm_head, decoder_with_lm_head_init
def generate_onnx_representation(
pretrained_version=None,
model=None,
output_path=None,
input_sequence_length=256,
onnx_opset_version=12, # no other opset versions are tested, change at your own risk
):
"""Exports a given huggingface pretrained model, or a given model and tokenizer, to onnx
Args:
pretrained_version (str): Name of a pretrained model, or path to a pretrained / finetuned version of T5
output_path (Optional[str]): if missing then use ./models
input_sequence_length (Optional[int]): typical input sequence length, for use by the ORT for possible optimization
onnx_opset_version (Optional[int]): ONNX Operator Set Version, default 12 is the only tested version
"""
if (pretrained_version is None) and model is None:
print(
"You need to specify pretrained_version (the pretrained model you wish to export). Alternatively you can export a model you have in memory."
)
return
if model is not None:
(
simplified_encoder,
decoder_with_lm_head,
decoder_with_lm_head_init,
) = turn_model_into_encoder_decoder(model)
else:
(
simplified_encoder,
decoder_with_lm_head,
decoder_with_lm_head_init,
) = create_t5_encoder_decoder(pretrained_version)
# model paths for enc, dec and dec_init
output_path = saved_models_path if output_path is None else Path(
output_path)
encoder_path, decoder_path, init_decoder_path = get_model_paths(
pretrained_version, output_path, quantized=False
)
model_config = AutoConfig.from_pretrained(
pretrained_version, use_auth_token=get_auth_token())
# Though these are dummy inputs, ORT optimizations do reference these values,
# so it is worth using values as close to production as possible
batch_size = 1 # not configurable since only CPU
enc_seq_length = input_sequence_length
# a decoder sequence length is always one because it's just the last generated token
dec_seq_length = 1
input_ids = torch.ones(batch_size, enc_seq_length, dtype=torch.int64)
attention_mask = torch.ones(batch_size, enc_seq_length, dtype=torch.int64)
n_heads = model_config.num_heads
d_kv = model_config.d_kv
input_ids_dec = torch.ones(batch_size, dec_seq_length, dtype=torch.int64)
attention_mask_dec = torch.ones(
batch_size, dec_seq_length, dtype=torch.int64)
enc_out = torch.ones(
(batch_size, enc_seq_length, model_config.d_model), dtype=torch.float32
)
# self_attention_past_key_values = torch.ones(
# (model_config.num_decoder_layers, 2, batch_size, n_heads, seq_length_a, d_kv), dtype=torch.float32)
# cross_attention_past_key_values = torch.ones(
# (model_config.num_decoder_layers, 2, batch_size, n_heads, seq_length_b, d_kv), dtype=torch.float32)
sa = torch.ones(
(batch_size, n_heads, dec_seq_length, d_kv), dtype=torch.float32
) # 1, 8, 1, 64
ca = torch.ones(
(batch_size, n_heads, enc_seq_length, d_kv), dtype=torch.float32
) # 1, 8, variable, 64
t5_block = (sa, sa, ca, ca)
past_key_values = (t5_block,) * model_config.num_decoder_layers
flat_past_key_values = functools.reduce(
operator.iconcat, past_key_values, [])
decoder_all_inputs = tuple(
[input_ids_dec, attention_mask_dec, enc_out] + flat_past_key_values
)
# for progress bars
bar = Bar("Exporting to onnx...", max=3)
import warnings
# ignores all the warnings during conversion
warnings.filterwarnings("ignore")
# Exports to ONNX
with torch.no_grad():
decoder_inputs = [
"input_ids",
"encoder_attention_mask",
"encoder_hidden_states",
]
pkv_input_names = ["pkv_{}".format(
i) for i in range(len(flat_past_key_values))]
decoder_input_names = decoder_inputs + pkv_input_names
decoder_output_names = ["logits", "output_past_key_values"]
dyn_axis_general = {0: "batch", 1: "sequence"}
dyn_axis_pkv = {0: "batch", 2: "seq_length"}
dyn_axis = {
"input_ids": dyn_axis_general,
"encoder_attention_mask": dyn_axis_general,
"encoder_hidden_states": dyn_axis_general,
"logits": dyn_axis_general,
"output_past_key_values": dyn_axis_general,
}
dyn_pkv = {
"pkv_{}".format(i): dyn_axis_pkv
for i in range(len(flat_past_key_values))
}
dyn_axis_params = {**dyn_axis, **dyn_pkv}
# decoder to utilize past key values:
torch.onnx.export(
decoder_with_lm_head,
decoder_all_inputs,
decoder_path.as_posix(),
export_params=True,
do_constant_folding=True,
opset_version=onnx_opset_version,
input_names=decoder_input_names,
output_names=decoder_output_names,
dynamic_axes=dyn_axis_params,
)
bar.next()
torch.onnx.export(
simplified_encoder,
args=(input_ids, attention_mask),
f=encoder_path.as_posix(),
export_params=True,
opset_version=onnx_opset_version,
do_constant_folding=True,
input_names=["input_ids", "attention_mask"],
output_names=["hidden_states"],
dynamic_axes={
"input_ids": dyn_axis_general,
"attention_mask": dyn_axis_general,
"hidden_states": dyn_axis_general,
},
)
bar.next()
# initial decoder to produce past key values
torch.onnx.export(
decoder_with_lm_head_init,
(input_ids_dec, attention_mask_dec, enc_out),
init_decoder_path.as_posix(),
export_params=True,
opset_version=onnx_opset_version,
input_names=[
"input_ids",
"encoder_attention_mask",
"encoder_hidden_states",
],
output_names=["logits", "past_key_values"],
dynamic_axes={
# batch_size, seq_length = input_shape
"input_ids": dyn_axis_general,
"encoder_attention_mask": dyn_axis_general,
"encoder_hidden_states": dyn_axis_general,
"logits": dyn_axis_general,
"past_key_values": dyn_axis_general,
},
)
bar.next()
bar.finish()
return encoder_path, decoder_path, init_decoder_path
def get_model_paths(pretrained_model, model_path, quantized):
model_path.mkdir(parents=True, exist_ok=True)
# gets only the filename
pretrained_model_name = Path(pretrained_model).stem
if not quantized:
encoder_path = model_path.joinpath(
f"{pretrained_model_name}-encoder.onnx")
decoder_path = model_path.joinpath(
f"{pretrained_model_name}-decoder.onnx")
init_decoder_path = model_path.joinpath(
f"{pretrained_model_name}-init-decoder.onnx"
)
else:
encoder_path = model_path.joinpath(
f"{pretrained_model_name}-encoder-quantized.onnx"
)
decoder_path = model_path.joinpath(
f"{pretrained_model_name}-decoder-quantized.onnx"
)
init_decoder_path = model_path.joinpath(
f"{pretrained_model_name}-init-decoder-quantized.onnx"
)
return encoder_path, decoder_path, init_decoder_path
def quantize(models_name_or_path):
"""
Quantize the weights of the model from float32 to in8 to allow very efficient inference on modern CPU
Uses unsigned ints for activation values, signed ints for weights, per
https://onnxruntime.ai/docs/performance/quantization.html#data-type-selection
it is faster on most CPU architectures
Args:
onnx_model_path: Path to location the exported ONNX model is stored
Returns: The Path generated for the quantized
"""
from onnxruntime.quantization import quantize_dynamic, QuantType
bar = Bar("Quantizing...", max=3)
quant_model_paths = []
for model in models_name_or_path:
model_name = model.as_posix()
output_model_name = f"{model_name[:-5]}-quantized.onnx"
quantize_dynamic(
model_input=model_name,
model_output=output_model_name,
per_channel=True,
reduce_range=True, # should be the same as per_channel
activation_type=QuantType.QUInt8,
weight_type=QuantType.QInt8, # per docs, signed is faster on most CPUs
optimize_model=False,
) # op_types_to_quantize=['MatMul', 'Relu', 'Add', 'Mul' ],
quant_model_paths.append(output_model_name)
bar.next()
bar.finish()
return tuple(quant_model_paths)
class T5Encoder(torch.nn.Module):
def __init__(self, encoder_sess):
super().__init__()
self.encoder = encoder_sess
self.main_input_name = "input_ids"
def forward(
self,
input_ids,
attention_mask,
inputs_embeds=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
encoder_hidden_state = torch.from_numpy(
self.encoder.run(
None,
{
"input_ids": input_ids.cpu().numpy(),
"attention_mask": attention_mask.cpu().numpy(),
},
)[0]
)
return BaseModelOutput(encoder_hidden_state)
class T5DecoderInit(torch.nn.Module):
def __init__(self, decoder_sess):
super().__init__()
self.decoder = decoder_sess
def forward(self, input_ids, encoder_attention_mask, encoder_hidden_states):
decoder_outputs = self.decoder.run(
None,
{
"input_ids": input_ids.cpu().numpy(),
"encoder_attention_mask": encoder_attention_mask.cpu().numpy(),
"encoder_hidden_states": encoder_hidden_states.cpu().numpy(),
},
)
list_pkv = tuple(torch.from_numpy(x) for x in decoder_outputs[1:])
out_past_key_values = tuple(
list_pkv[i: i + 4] for i in range(0, len(list_pkv), 4)
)
return torch.from_numpy(decoder_outputs[0]), out_past_key_values
class T5Decoder(torch.nn.Module):
def __init__(self, decoder_sess):
super().__init__()
self.decoder = decoder_sess
def forward(self, input_ids, attention_mask, encoder_output, past_key_values):
decoder_inputs = {
"input_ids": input_ids.cpu().numpy(),
"encoder_attention_mask": attention_mask.cpu().numpy(),
"encoder_hidden_states": encoder_output.cpu().numpy(),
}
flat_past_key_values = functools.reduce(
operator.iconcat, past_key_values, [])
past_key_values = {
f"pkv_{i}": pkv.cpu().numpy() for i, pkv in enumerate(flat_past_key_values)
}
decoder_outputs = self.decoder.run(
None, {**decoder_inputs, **past_key_values})
# converts each value of the list to tensor from numpy
list_pkv = tuple(torch.from_numpy(x) for x in decoder_outputs[1:])
# creates a tuple of tuples of shape 6x4 from the above tuple
out_past_key_values = tuple(
list_pkv[i: i + 4] for i in range(0, len(list_pkv), 4)
)
return torch.from_numpy(decoder_outputs[0]), out_past_key_values
class OnnxT5(T5ForConditionalGeneration):
"""creates a T5 model using onnx sessions (encode, decoder & init_decoder)"""
def __init__(self, model_or_model_path, onnx_model_sessions):
config = AutoConfig.from_pretrained(
model_or_model_path, use_auth_token=get_auth_token()
)
super().__init__(config)
# monkeypatch to work for MT5
if (
isinstance(model_or_model_path, str)
and "mt5" in model_or_model_path.lower()
) or (
hasattr(model_or_model_path, "name_or_path")
and "mt5" in model_or_model_path.name_or_path
):
self.model_type = "mt5"
self.config_class = MT5Config
self._keys_to_ignore_on_load_missing = [
r"encoder\.embed_tokens\.weight",
]
self._keys_to_ignore_on_save = [
r"encoder\.embed_tokens\.weight",
]
assert len(onnx_model_sessions) == 3, "all three models should be given"
encoder_sess, decoder_sess, decoder_sess_init = onnx_model_sessions
self.encoder = T5Encoder(encoder_sess)
self.decoder = T5Decoder(decoder_sess)
self.decoder_init = T5DecoderInit(decoder_sess_init)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids, attention_mask=attention_mask
)
encoder_hidden_states = encoder_outputs[0]
if past_key_values is not None:
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
if decoder_inputs_embeds is not None:
decoder_inputs_embeds = decoder_inputs_embeds[:, -1:]
if past_key_values is None:
# runs only for the first time:
init_onnx_outputs = self.decoder_init(
decoder_input_ids, attention_mask, encoder_hidden_states
)
logits, past_key_values = init_onnx_outputs
else:
onnx_outputs = self.decoder(
decoder_input_ids,
attention_mask,
encoder_hidden_states,
past_key_values,
)
logits, past_key_values = onnx_outputs
return Seq2SeqLMOutput(logits=logits, past_key_values=past_key_values)
def export_and_get_onnx_model(
model_or_model_path, custom_output_path=saved_models_path, quantized=True
):
"""
Method for whole pipeline,
converts from pytorch to onnx --> quantizes model --> sets onnx runtime
--> builds whole onnx model with all sessions
"""
# Step 1. convert huggingfaces t5 model to onnx
onnx_model_paths = generate_onnx_representation(
model_or_model_path, output_path=custom_output_path
)
if quantized:
# Step 2. (recommended) quantize the converted model for fast inference and to reduce model size.
quant_model_paths = quantize(onnx_model_paths)
# step 3. setup onnx runtime
print("Setting up onnx model...")
model_sessions = get_onnx_runtime_sessions(quant_model_paths)
else:
print("Setting up onnx model...")
model_sessions = get_onnx_runtime_sessions(onnx_model_paths)
# step 4. get the onnx model
model = OnnxT5(model_or_model_path, model_sessions)
print("Done!")
return model
def get_onnx_model(model_name, onnx_models_path=saved_models_path, quantized=True):
"""
method gets the onnx model, if already converted models exists
Example:
>> get_onnx_model(model_name="t5-finetuned", onnx_models_path="../models/onnx/quantized/")
"""
encoder_path, decoder_path, init_decoder_path = get_model_paths(
model_name, Path(onnx_models_path), quantized
)
if quantized:
assert (
encoder_path.exists()
and decoder_path.exists()
and init_decoder_path.exists()
), "quantized model don't exist in the model folder, first quantize the model!"
else:
assert (
encoder_path.exists()
and decoder_path.exists()
and init_decoder_path.exists()
), "all or some models don't exists in the model folder, first convert the model! "
model_paths = encoder_path, decoder_path, init_decoder_path
model_sessions = get_onnx_runtime_sessions(model_paths)
model = OnnxT5(model_name, model_sessions)
return model
trained_model_path = './t5_squad_v1/'
pretrained_model_name = Path(trained_model_path).stem
encoder_path = os.path.join(
trained_model_path, f"{pretrained_model_name}-encoder_quantized.onnx")
decoder_path = os.path.join(
trained_model_path, f"{pretrained_model_name}-decoder_quantized.onnx")
init_decoder_path = os.path.join(
trained_model_path, f"{pretrained_model_name}-init-decoder_quantized.onnx")
model_paths = encoder_path, decoder_path, init_decoder_path
model_sessions = get_onnx_runtime_sessions(model_paths)
model = OnnxT5(trained_model_path, model_sessions)
tokenizer = AutoTokenizer.from_pretrained(trained_model_path)
def get_question(sentence, answer, mdl, tknizer):
text = "context: {} answer: {}".format(sentence, answer)
print(text)
max_len = 256
encoding = tknizer.encode_plus(
text, max_length=max_len, pad_to_max_length=False, truncation=True, return_tensors="pt")
input_ids, attention_mask = encoding["input_ids"], encoding["attention_mask"]
outs = mdl.generate(input_ids=input_ids,
attention_mask=attention_mask,
early_stopping=True,
num_beams=5,
num_return_sequences=1,
no_repeat_ngram_size=2,
max_length=300)
dec = [tknizer.decode(ids, skip_special_tokens=True) for ids in outs]
Question = dec[0].replace("question:", "")
Ouestion = Question.strip()
return Question
# context = "Ramsri loves to watch cricket during his free time"
# answer = "cricket"
context = "Donald Trump is an American media personality and businessman who served as the 45th president of the United States."
answer = "Donald Trump"
ques = get_question(context, answer, model, tokenizer)
print("question: ", ques)
context = gr.components.Textbox(
lines=5, placeholder="Enter paragraph/context here...")
answer = gr.components.Textbox(
lines=3, placeholder="Enter answer/keyword here...")
question = gr.components.Textbox(type="text", label="Question")
def generate_question(context, answer):
start_time = time.time() # Record the start time
result = get_question(context, answer, model, tokenizer)
end_time = time.time() # Record the end time
latency = end_time - start_time # Calculate latency
print(f"Latency: {latency} seconds")
return result
iface = gr.Interface(
fn=generate_question,
inputs=[context, answer],
outputs=question
)
iface.launch()
|