File size: 8,294 Bytes
1571051 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
from .huggingface_utils import get_auth_token
from .ort_settings import get_onnx_runtime_sessions
from .onnx_exporter import (
generate_onnx_representation,
quantize,
get_model_paths,
saved_models_path,
)
from pathlib import Path
from transformers import (
AutoConfig,
MT5Config,
T5ForConditionalGeneration,
)
from transformers.modeling_outputs import (
Seq2SeqLMOutput,
BaseModelOutput,
)
import torch
import functools
import operator
import numpy
class T5Encoder(torch.nn.Module):
def __init__(self, encoder_sess):
super().__init__()
self.encoder = encoder_sess
self.main_input_name = "input_ids"
def forward(
self,
input_ids,
attention_mask,
inputs_embeds=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
encoder_hidden_state = torch.from_numpy(
self.encoder.run(
None,
{
"input_ids": input_ids.cpu().numpy(),
"attention_mask": attention_mask.cpu().numpy(),
},
)[0]
)
return BaseModelOutput(encoder_hidden_state)
class T5DecoderInit(torch.nn.Module):
def __init__(self, decoder_sess):
super().__init__()
self.decoder = decoder_sess
def forward(self, input_ids, encoder_attention_mask, encoder_hidden_states):
decoder_outputs = self.decoder.run(
None,
{
"input_ids": input_ids.cpu().numpy(),
"encoder_attention_mask": encoder_attention_mask.cpu().numpy(),
"encoder_hidden_states": encoder_hidden_states.cpu().numpy(),
},
)
list_pkv = tuple(torch.from_numpy(x) for x in decoder_outputs[1:])
out_past_key_values = tuple(
list_pkv[i: i + 4] for i in range(0, len(list_pkv), 4)
)
return torch.from_numpy(decoder_outputs[0]), out_past_key_values
class T5Decoder(torch.nn.Module):
def __init__(self, decoder_sess):
super().__init__()
self.decoder = decoder_sess
def forward(self, input_ids, attention_mask, encoder_output, past_key_values):
decoder_inputs = {
"input_ids": input_ids.cpu().numpy(),
"encoder_attention_mask": attention_mask.cpu().numpy(),
"encoder_hidden_states": encoder_output.cpu().numpy(),
}
flat_past_key_values = functools.reduce(
operator.iconcat, past_key_values, [])
past_key_values = {
f"pkv_{i}": pkv.cpu().numpy() for i, pkv in enumerate(flat_past_key_values)
}
decoder_outputs = self.decoder.run(
None, {**decoder_inputs, **past_key_values})
# converts each value of the list to tensor from numpy
list_pkv = tuple(torch.from_numpy(x) for x in decoder_outputs[1:])
# creates a tuple of tuples of shape 6x4 from the above tuple
out_past_key_values = tuple(
list_pkv[i: i + 4] for i in range(0, len(list_pkv), 4)
)
return torch.from_numpy(decoder_outputs[0]), out_past_key_values
class OnnxT5(T5ForConditionalGeneration):
"""creates a T5 model using onnx sessions (encode, decoder & init_decoder)"""
def __init__(self, model_or_model_path, onnx_model_sessions):
config = AutoConfig.from_pretrained(
model_or_model_path, use_auth_token=get_auth_token()
)
super().__init__(config)
# monkeypatch to work for MT5
if (
isinstance(model_or_model_path, str)
and "mt5" in model_or_model_path.lower()
) or (
hasattr(model_or_model_path, "name_or_path")
and "mt5" in model_or_model_path.name_or_path
):
self.model_type = "mt5"
self.config_class = MT5Config
self._keys_to_ignore_on_load_missing = [
r"encoder\.embed_tokens\.weight",
]
self._keys_to_ignore_on_save = [
r"encoder\.embed_tokens\.weight",
]
assert len(onnx_model_sessions) == 3, "all three models should be given"
encoder_sess, decoder_sess, decoder_sess_init = onnx_model_sessions
self.encoder = T5Encoder(encoder_sess)
self.decoder = T5Decoder(decoder_sess)
self.decoder_init = T5DecoderInit(decoder_sess_init)
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
labels=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids, attention_mask=attention_mask
)
encoder_hidden_states = encoder_outputs[0]
if past_key_values is not None:
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
if decoder_inputs_embeds is not None:
decoder_inputs_embeds = decoder_inputs_embeds[:, -1:]
if past_key_values is None:
# runs only for the first time:
init_onnx_outputs = self.decoder_init(
decoder_input_ids, attention_mask, encoder_hidden_states
)
logits, past_key_values = init_onnx_outputs
else:
onnx_outputs = self.decoder(
decoder_input_ids,
attention_mask,
encoder_hidden_states,
past_key_values,
)
logits, past_key_values = onnx_outputs
return Seq2SeqLMOutput(logits=logits, past_key_values=past_key_values)
def export_and_get_onnx_model(
model_or_model_path, custom_output_path=saved_models_path, quantized=True
):
"""
Method for whole pipeline,
converts from pytorch to onnx --> quantizes model --> sets onnx runtime
--> builds whole onnx model with all sessions
"""
# Step 1. convert huggingfaces t5 model to onnx
onnx_model_paths = generate_onnx_representation(
model_or_model_path, output_path=custom_output_path
)
if quantized:
# Step 2. (recommended) quantize the converted model for fast inference and to reduce model size.
quant_model_paths = quantize(onnx_model_paths)
# step 3. setup onnx runtime
print("Setting up onnx model...")
model_sessions = get_onnx_runtime_sessions(quant_model_paths)
else:
print("Setting up onnx model...")
model_sessions = get_onnx_runtime_sessions(onnx_model_paths)
# step 4. get the onnx model
model = OnnxT5(model_or_model_path, model_sessions)
print("Done!")
return model
def get_onnx_model(model_name, onnx_models_path=saved_models_path, quantized=True):
"""
method gets the onnx model, if already converted models exists
Example:
>> get_onnx_model(model_name="t5-finetuned", onnx_models_path="../models/onnx/quantized/")
"""
encoder_path, decoder_path, init_decoder_path = get_model_paths(
model_name, Path(onnx_models_path), quantized
)
if quantized:
assert (
encoder_path.exists()
and decoder_path.exists()
and init_decoder_path.exists()
), "quantized model don't exist in the model folder, first quantize the model!"
else:
assert (
encoder_path.exists()
and decoder_path.exists()
and init_decoder_path.exists()
), "all or some models don't exists in the model folder, first convert the model! "
model_paths = encoder_path, decoder_path, init_decoder_path
model_sessions = get_onnx_runtime_sessions(model_paths)
model = OnnxT5(model_name, model_sessions)
return model
|