|
#include <torch/extension.h>
|
|
#include "api.h"
|
|
#include "z_order.h"
|
|
#include "hilbert.h"
|
|
|
|
|
|
torch::Tensor
|
|
z_order_encode(
|
|
const torch::Tensor& x,
|
|
const torch::Tensor& y,
|
|
const torch::Tensor& z
|
|
) {
|
|
|
|
torch::Tensor codes = torch::empty_like(x);
|
|
|
|
|
|
z_order_encode_cuda<<<(x.size(0) + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE>>>(
|
|
x.size(0),
|
|
reinterpret_cast<uint32_t*>(x.contiguous().data_ptr<int>()),
|
|
reinterpret_cast<uint32_t*>(y.contiguous().data_ptr<int>()),
|
|
reinterpret_cast<uint32_t*>(z.contiguous().data_ptr<int>()),
|
|
reinterpret_cast<uint32_t*>(codes.data_ptr<int>())
|
|
);
|
|
|
|
return codes;
|
|
}
|
|
|
|
|
|
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>
|
|
z_order_decode(
|
|
const torch::Tensor& codes
|
|
) {
|
|
|
|
torch::Tensor x = torch::empty_like(codes);
|
|
torch::Tensor y = torch::empty_like(codes);
|
|
torch::Tensor z = torch::empty_like(codes);
|
|
|
|
|
|
z_order_decode_cuda<<<(codes.size(0) + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE>>>(
|
|
codes.size(0),
|
|
reinterpret_cast<uint32_t*>(codes.contiguous().data_ptr<int>()),
|
|
reinterpret_cast<uint32_t*>(x.data_ptr<int>()),
|
|
reinterpret_cast<uint32_t*>(y.data_ptr<int>()),
|
|
reinterpret_cast<uint32_t*>(z.data_ptr<int>())
|
|
);
|
|
|
|
return std::make_tuple(x, y, z);
|
|
}
|
|
|
|
|
|
torch::Tensor
|
|
hilbert_encode(
|
|
const torch::Tensor& x,
|
|
const torch::Tensor& y,
|
|
const torch::Tensor& z
|
|
) {
|
|
|
|
torch::Tensor codes = torch::empty_like(x);
|
|
|
|
|
|
hilbert_encode_cuda<<<(x.size(0) + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE>>>(
|
|
x.size(0),
|
|
reinterpret_cast<uint32_t*>(x.contiguous().data_ptr<int>()),
|
|
reinterpret_cast<uint32_t*>(y.contiguous().data_ptr<int>()),
|
|
reinterpret_cast<uint32_t*>(z.contiguous().data_ptr<int>()),
|
|
reinterpret_cast<uint32_t*>(codes.data_ptr<int>())
|
|
);
|
|
|
|
return codes;
|
|
}
|
|
|
|
|
|
std::tuple<torch::Tensor, torch::Tensor, torch::Tensor>
|
|
hilbert_decode(
|
|
const torch::Tensor& codes
|
|
) {
|
|
|
|
torch::Tensor x = torch::empty_like(codes);
|
|
torch::Tensor y = torch::empty_like(codes);
|
|
torch::Tensor z = torch::empty_like(codes);
|
|
|
|
|
|
hilbert_decode_cuda<<<(codes.size(0) + BLOCK_SIZE - 1) / BLOCK_SIZE, BLOCK_SIZE>>>(
|
|
codes.size(0),
|
|
reinterpret_cast<uint32_t*>(codes.contiguous().data_ptr<int>()),
|
|
reinterpret_cast<uint32_t*>(x.data_ptr<int>()),
|
|
reinterpret_cast<uint32_t*>(y.data_ptr<int>()),
|
|
reinterpret_cast<uint32_t*>(z.data_ptr<int>())
|
|
);
|
|
|
|
return std::make_tuple(x, y, z);
|
|
}
|
|
|