|
from typing import *
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
from ..modules.utils import convert_module_to_f16, convert_module_to_f32
|
|
from ..modules.transformer import AbsolutePositionEmbedder, ModulatedTransformerCrossBlock
|
|
from ..modules.spatial import patchify, unpatchify
|
|
|
|
|
|
class TimestepEmbedder(nn.Module):
|
|
"""
|
|
Embeds scalar timesteps into vector representations.
|
|
"""
|
|
def __init__(self, hidden_size, frequency_embedding_size=256):
|
|
super().__init__()
|
|
self.mlp = nn.Sequential(
|
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
|
|
nn.SiLU(),
|
|
nn.Linear(hidden_size, hidden_size, bias=True),
|
|
)
|
|
self.frequency_embedding_size = frequency_embedding_size
|
|
|
|
@staticmethod
|
|
def timestep_embedding(t, dim, max_period=10000):
|
|
"""
|
|
Create sinusoidal timestep embeddings.
|
|
|
|
Args:
|
|
t: a 1-D Tensor of N indices, one per batch element.
|
|
These may be fractional.
|
|
dim: the dimension of the output.
|
|
max_period: controls the minimum frequency of the embeddings.
|
|
|
|
Returns:
|
|
an (N, D) Tensor of positional embeddings.
|
|
"""
|
|
|
|
half = dim // 2
|
|
freqs = torch.exp(
|
|
-np.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
|
).to(device=t.device)
|
|
args = t[:, None].float() * freqs[None]
|
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
|
if dim % 2:
|
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
|
return embedding
|
|
|
|
def forward(self, t):
|
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
|
t_emb = self.mlp(t_freq)
|
|
return t_emb
|
|
|
|
|
|
class SparseStructureFlowModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
resolution: int,
|
|
in_channels: int,
|
|
model_channels: int,
|
|
cond_channels: int,
|
|
out_channels: int,
|
|
num_blocks: int,
|
|
num_heads: Optional[int] = None,
|
|
num_head_channels: Optional[int] = 64,
|
|
mlp_ratio: float = 4,
|
|
patch_size: int = 2,
|
|
pe_mode: Literal["ape", "rope"] = "ape",
|
|
use_fp16: bool = False,
|
|
use_checkpoint: bool = False,
|
|
share_mod: bool = False,
|
|
qk_rms_norm: bool = False,
|
|
qk_rms_norm_cross: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.resolution = resolution
|
|
self.in_channels = in_channels
|
|
self.model_channels = model_channels
|
|
self.cond_channels = cond_channels
|
|
self.out_channels = out_channels
|
|
self.num_blocks = num_blocks
|
|
self.num_heads = num_heads or model_channels // num_head_channels
|
|
self.mlp_ratio = mlp_ratio
|
|
self.patch_size = patch_size
|
|
self.pe_mode = pe_mode
|
|
self.use_fp16 = use_fp16
|
|
self.use_checkpoint = use_checkpoint
|
|
self.share_mod = share_mod
|
|
self.qk_rms_norm = qk_rms_norm
|
|
self.qk_rms_norm_cross = qk_rms_norm_cross
|
|
self.dtype = torch.float16 if use_fp16 else torch.float32
|
|
|
|
self.t_embedder = TimestepEmbedder(model_channels)
|
|
if share_mod:
|
|
self.adaLN_modulation = nn.Sequential(
|
|
nn.SiLU(),
|
|
nn.Linear(model_channels, 6 * model_channels, bias=True)
|
|
)
|
|
|
|
if pe_mode == "ape":
|
|
pos_embedder = AbsolutePositionEmbedder(model_channels, 3)
|
|
coords = torch.meshgrid(*[torch.arange(res, device=self.device) for res in [resolution // patch_size] * 3], indexing='ij')
|
|
coords = torch.stack(coords, dim=-1).reshape(-1, 3)
|
|
pos_emb = pos_embedder(coords)
|
|
self.register_buffer("pos_emb", pos_emb)
|
|
|
|
self.input_layer = nn.Linear(in_channels * patch_size**3, model_channels)
|
|
|
|
self.blocks = nn.ModuleList([
|
|
ModulatedTransformerCrossBlock(
|
|
model_channels,
|
|
cond_channels,
|
|
num_heads=self.num_heads,
|
|
mlp_ratio=self.mlp_ratio,
|
|
attn_mode='full',
|
|
use_checkpoint=self.use_checkpoint,
|
|
use_rope=(pe_mode == "rope"),
|
|
share_mod=share_mod,
|
|
qk_rms_norm=self.qk_rms_norm,
|
|
qk_rms_norm_cross=self.qk_rms_norm_cross,
|
|
)
|
|
for _ in range(num_blocks)
|
|
])
|
|
|
|
self.out_layer = nn.Linear(model_channels, out_channels * patch_size**3)
|
|
|
|
self.initialize_weights()
|
|
if use_fp16:
|
|
self.convert_to_fp16()
|
|
|
|
@property
|
|
def device(self) -> torch.device:
|
|
"""
|
|
Return the device of the model.
|
|
"""
|
|
return next(self.parameters()).device
|
|
|
|
def convert_to_fp16(self) -> None:
|
|
"""
|
|
Convert the torso of the model to float16.
|
|
"""
|
|
self.blocks.apply(convert_module_to_f16)
|
|
|
|
def convert_to_fp32(self) -> None:
|
|
"""
|
|
Convert the torso of the model to float32.
|
|
"""
|
|
self.blocks.apply(convert_module_to_f32)
|
|
|
|
def initialize_weights(self) -> None:
|
|
|
|
def _basic_init(module):
|
|
if isinstance(module, nn.Linear):
|
|
torch.nn.init.xavier_uniform_(module.weight)
|
|
if module.bias is not None:
|
|
nn.init.constant_(module.bias, 0)
|
|
self.apply(_basic_init)
|
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
|
|
|
|
|
if self.share_mod:
|
|
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
|
|
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
|
|
else:
|
|
for block in self.blocks:
|
|
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
|
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
|
|
|
|
|
nn.init.constant_(self.out_layer.weight, 0)
|
|
nn.init.constant_(self.out_layer.bias, 0)
|
|
|
|
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: torch.Tensor) -> torch.Tensor:
|
|
assert [*x.shape] == [x.shape[0], self.in_channels, *[self.resolution] * 3], \
|
|
f"Input shape mismatch, got {x.shape}, expected {[x.shape[0], self.in_channels, *[self.resolution] * 3]}"
|
|
|
|
h = patchify(x, self.patch_size)
|
|
h = h.view(*h.shape[:2], -1).permute(0, 2, 1).contiguous()
|
|
|
|
h = self.input_layer(h)
|
|
h = h + self.pos_emb[None]
|
|
t_emb = self.t_embedder(t)
|
|
if self.share_mod:
|
|
t_emb = self.adaLN_modulation(t_emb)
|
|
t_emb = t_emb.type(self.dtype)
|
|
h = h.type(self.dtype)
|
|
cond = cond.type(self.dtype)
|
|
for block in self.blocks:
|
|
h = block(h, t_emb, cond)
|
|
h = h.type(x.dtype)
|
|
h = F.layer_norm(h, h.shape[-1:])
|
|
h = self.out_layer(h)
|
|
|
|
h = h.permute(0, 2, 1).view(h.shape[0], h.shape[2], *[self.resolution // self.patch_size] * 3)
|
|
h = unpatchify(h, self.patch_size).contiguous()
|
|
|
|
return h
|
|
|