|
from typing import *
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
from ..modules.utils import zero_module, convert_module_to_f16, convert_module_to_f32
|
|
from ..modules.transformer import AbsolutePositionEmbedder
|
|
from ..modules.norm import LayerNorm32
|
|
from ..modules import sparse as sp
|
|
from ..modules.sparse.transformer import ModulatedSparseTransformerCrossBlock
|
|
from .sparse_structure_flow import TimestepEmbedder
|
|
|
|
|
|
class SparseResBlock3d(nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
emb_channels: int,
|
|
out_channels: Optional[int] = None,
|
|
downsample: bool = False,
|
|
upsample: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.emb_channels = emb_channels
|
|
self.out_channels = out_channels or channels
|
|
self.downsample = downsample
|
|
self.upsample = upsample
|
|
|
|
assert not (downsample and upsample), "Cannot downsample and upsample at the same time"
|
|
|
|
self.norm1 = LayerNorm32(channels, elementwise_affine=True, eps=1e-6)
|
|
self.norm2 = LayerNorm32(self.out_channels, elementwise_affine=False, eps=1e-6)
|
|
self.conv1 = sp.SparseConv3d(channels, self.out_channels, 3)
|
|
self.conv2 = zero_module(sp.SparseConv3d(self.out_channels, self.out_channels, 3))
|
|
self.emb_layers = nn.Sequential(
|
|
nn.SiLU(),
|
|
nn.Linear(emb_channels, 2 * self.out_channels, bias=True),
|
|
)
|
|
self.skip_connection = sp.SparseLinear(channels, self.out_channels) if channels != self.out_channels else nn.Identity()
|
|
self.updown = None
|
|
if self.downsample:
|
|
self.updown = sp.SparseDownsample(2)
|
|
elif self.upsample:
|
|
self.updown = sp.SparseUpsample(2)
|
|
|
|
def _updown(self, x: sp.SparseTensor) -> sp.SparseTensor:
|
|
if self.updown is not None:
|
|
x = self.updown(x)
|
|
return x
|
|
|
|
def forward(self, x: sp.SparseTensor, emb: torch.Tensor) -> sp.SparseTensor:
|
|
emb_out = self.emb_layers(emb).type(x.dtype)
|
|
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
|
|
|
x = self._updown(x)
|
|
h = x.replace(self.norm1(x.feats))
|
|
h = h.replace(F.silu(h.feats))
|
|
h = self.conv1(h)
|
|
h = h.replace(self.norm2(h.feats)) * (1 + scale) + shift
|
|
h = h.replace(F.silu(h.feats))
|
|
h = self.conv2(h)
|
|
h = h + self.skip_connection(x)
|
|
|
|
return h
|
|
|
|
|
|
class SLatFlowModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
resolution: int,
|
|
in_channels: int,
|
|
model_channels: int,
|
|
cond_channels: int,
|
|
out_channels: int,
|
|
num_blocks: int,
|
|
num_heads: Optional[int] = None,
|
|
num_head_channels: Optional[int] = 64,
|
|
mlp_ratio: float = 4,
|
|
patch_size: int = 2,
|
|
num_io_res_blocks: int = 2,
|
|
io_block_channels: List[int] = None,
|
|
pe_mode: Literal["ape", "rope"] = "ape",
|
|
use_fp16: bool = False,
|
|
use_checkpoint: bool = False,
|
|
use_skip_connection: bool = True,
|
|
share_mod: bool = False,
|
|
qk_rms_norm: bool = False,
|
|
qk_rms_norm_cross: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.resolution = resolution
|
|
self.in_channels = in_channels
|
|
self.model_channels = model_channels
|
|
self.cond_channels = cond_channels
|
|
self.out_channels = out_channels
|
|
self.num_blocks = num_blocks
|
|
self.num_heads = num_heads or model_channels // num_head_channels
|
|
self.mlp_ratio = mlp_ratio
|
|
self.patch_size = patch_size
|
|
self.num_io_res_blocks = num_io_res_blocks
|
|
self.io_block_channels = io_block_channels
|
|
self.pe_mode = pe_mode
|
|
self.use_fp16 = use_fp16
|
|
self.use_checkpoint = use_checkpoint
|
|
self.use_skip_connection = use_skip_connection
|
|
self.share_mod = share_mod
|
|
self.qk_rms_norm = qk_rms_norm
|
|
self.qk_rms_norm_cross = qk_rms_norm_cross
|
|
self.dtype = torch.float16 if use_fp16 else torch.float32
|
|
|
|
assert int(np.log2(patch_size)) == np.log2(patch_size), "Patch size must be a power of 2"
|
|
assert np.log2(patch_size) == len(io_block_channels), "Number of IO ResBlocks must match the number of stages"
|
|
|
|
self.t_embedder = TimestepEmbedder(model_channels)
|
|
if share_mod:
|
|
self.adaLN_modulation = nn.Sequential(
|
|
nn.SiLU(),
|
|
nn.Linear(model_channels, 6 * model_channels, bias=True)
|
|
)
|
|
|
|
if pe_mode == "ape":
|
|
self.pos_embedder = AbsolutePositionEmbedder(model_channels)
|
|
|
|
self.input_layer = sp.SparseLinear(in_channels, io_block_channels[0])
|
|
self.input_blocks = nn.ModuleList([])
|
|
for chs, next_chs in zip(io_block_channels, io_block_channels[1:] + [model_channels]):
|
|
self.input_blocks.extend([
|
|
SparseResBlock3d(
|
|
chs,
|
|
model_channels,
|
|
out_channels=chs,
|
|
)
|
|
for _ in range(num_io_res_blocks-1)
|
|
])
|
|
self.input_blocks.append(
|
|
SparseResBlock3d(
|
|
chs,
|
|
model_channels,
|
|
out_channels=next_chs,
|
|
downsample=True,
|
|
)
|
|
)
|
|
|
|
self.blocks = nn.ModuleList([
|
|
ModulatedSparseTransformerCrossBlock(
|
|
model_channels,
|
|
cond_channels,
|
|
num_heads=self.num_heads,
|
|
mlp_ratio=self.mlp_ratio,
|
|
attn_mode='full',
|
|
use_checkpoint=self.use_checkpoint,
|
|
use_rope=(pe_mode == "rope"),
|
|
share_mod=self.share_mod,
|
|
qk_rms_norm=self.qk_rms_norm,
|
|
qk_rms_norm_cross=self.qk_rms_norm_cross,
|
|
)
|
|
for _ in range(num_blocks)
|
|
])
|
|
|
|
self.out_blocks = nn.ModuleList([])
|
|
for chs, prev_chs in zip(reversed(io_block_channels), [model_channels] + list(reversed(io_block_channels[1:]))):
|
|
self.out_blocks.append(
|
|
SparseResBlock3d(
|
|
prev_chs * 2 if self.use_skip_connection else prev_chs,
|
|
model_channels,
|
|
out_channels=chs,
|
|
upsample=True,
|
|
)
|
|
)
|
|
self.out_blocks.extend([
|
|
SparseResBlock3d(
|
|
chs * 2 if self.use_skip_connection else chs,
|
|
model_channels,
|
|
out_channels=chs,
|
|
)
|
|
for _ in range(num_io_res_blocks-1)
|
|
])
|
|
self.out_layer = sp.SparseLinear(io_block_channels[0], out_channels)
|
|
|
|
self.initialize_weights()
|
|
if use_fp16:
|
|
self.convert_to_fp16()
|
|
|
|
@property
|
|
def device(self) -> torch.device:
|
|
"""
|
|
Return the device of the model.
|
|
"""
|
|
return next(self.parameters()).device
|
|
|
|
def convert_to_fp16(self) -> None:
|
|
"""
|
|
Convert the torso of the model to float16.
|
|
"""
|
|
self.input_blocks.apply(convert_module_to_f16)
|
|
self.blocks.apply(convert_module_to_f16)
|
|
self.out_blocks.apply(convert_module_to_f16)
|
|
|
|
def convert_to_fp32(self) -> None:
|
|
"""
|
|
Convert the torso of the model to float32.
|
|
"""
|
|
self.input_blocks.apply(convert_module_to_f32)
|
|
self.blocks.apply(convert_module_to_f32)
|
|
self.out_blocks.apply(convert_module_to_f32)
|
|
|
|
def initialize_weights(self) -> None:
|
|
|
|
def _basic_init(module):
|
|
if isinstance(module, nn.Linear):
|
|
torch.nn.init.xavier_uniform_(module.weight)
|
|
if module.bias is not None:
|
|
nn.init.constant_(module.bias, 0)
|
|
self.apply(_basic_init)
|
|
|
|
|
|
nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
|
|
nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)
|
|
|
|
|
|
if self.share_mod:
|
|
nn.init.constant_(self.adaLN_modulation[-1].weight, 0)
|
|
nn.init.constant_(self.adaLN_modulation[-1].bias, 0)
|
|
else:
|
|
for block in self.blocks:
|
|
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
|
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
|
|
|
|
|
nn.init.constant_(self.out_layer.weight, 0)
|
|
nn.init.constant_(self.out_layer.bias, 0)
|
|
|
|
def forward(self, x: sp.SparseTensor, t: torch.Tensor, cond: torch.Tensor) -> sp.SparseTensor:
|
|
h = self.input_layer(x).type(self.dtype)
|
|
t_emb = self.t_embedder(t)
|
|
if self.share_mod:
|
|
t_emb = self.adaLN_modulation(t_emb)
|
|
t_emb = t_emb.type(self.dtype)
|
|
cond = cond.type(self.dtype)
|
|
|
|
skips = []
|
|
|
|
for block in self.input_blocks:
|
|
h = block(h, t_emb)
|
|
skips.append(h.feats)
|
|
|
|
if self.pe_mode == "ape":
|
|
h = h + self.pos_embedder(h.coords[:, 1:]).type(self.dtype)
|
|
for block in self.blocks:
|
|
h = block(h, t_emb, cond)
|
|
|
|
|
|
for block, skip in zip(self.out_blocks, reversed(skips)):
|
|
if self.use_skip_connection:
|
|
h = block(h.replace(torch.cat([h.feats, skip], dim=1)), t_emb)
|
|
else:
|
|
h = block(h, t_emb)
|
|
|
|
h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
|
|
h = self.out_layer(h.type(x.dtype))
|
|
return h
|
|
|