|
from typing import *
|
|
import torch
|
|
from .. import SparseTensor
|
|
from .. import DEBUG, ATTN
|
|
|
|
if ATTN == 'xformers':
|
|
import xformers.ops as xops
|
|
elif ATTN == 'flash_attn':
|
|
import flash_attn
|
|
else:
|
|
raise ValueError(f"Unknown attention module: {ATTN}")
|
|
|
|
|
|
__all__ = [
|
|
'sparse_scaled_dot_product_attention',
|
|
]
|
|
|
|
|
|
@overload
|
|
def sparse_scaled_dot_product_attention(qkv: SparseTensor) -> SparseTensor:
|
|
"""
|
|
Apply scaled dot product attention to a sparse tensor.
|
|
|
|
Args:
|
|
qkv (SparseTensor): A [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
|
|
"""
|
|
...
|
|
|
|
@overload
|
|
def sparse_scaled_dot_product_attention(q: SparseTensor, kv: Union[SparseTensor, torch.Tensor]) -> SparseTensor:
|
|
"""
|
|
Apply scaled dot product attention to a sparse tensor.
|
|
|
|
Args:
|
|
q (SparseTensor): A [N, *, H, C] sparse tensor containing Qs.
|
|
kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor or a [N, L, 2, H, C] dense tensor containing Ks and Vs.
|
|
"""
|
|
...
|
|
|
|
@overload
|
|
def sparse_scaled_dot_product_attention(q: torch.Tensor, kv: SparseTensor) -> torch.Tensor:
|
|
"""
|
|
Apply scaled dot product attention to a sparse tensor.
|
|
|
|
Args:
|
|
q (SparseTensor): A [N, L, H, C] dense tensor containing Qs.
|
|
kv (SparseTensor or torch.Tensor): A [N, *, 2, H, C] sparse tensor containing Ks and Vs.
|
|
"""
|
|
...
|
|
|
|
@overload
|
|
def sparse_scaled_dot_product_attention(q: SparseTensor, k: SparseTensor, v: SparseTensor) -> SparseTensor:
|
|
"""
|
|
Apply scaled dot product attention to a sparse tensor.
|
|
|
|
Args:
|
|
q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
|
|
k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
|
|
v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
|
|
|
|
Note:
|
|
k and v are assumed to have the same coordinate map.
|
|
"""
|
|
...
|
|
|
|
@overload
|
|
def sparse_scaled_dot_product_attention(q: SparseTensor, k: torch.Tensor, v: torch.Tensor) -> SparseTensor:
|
|
"""
|
|
Apply scaled dot product attention to a sparse tensor.
|
|
|
|
Args:
|
|
q (SparseTensor): A [N, *, H, Ci] sparse tensor containing Qs.
|
|
k (torch.Tensor): A [N, L, H, Ci] dense tensor containing Ks.
|
|
v (torch.Tensor): A [N, L, H, Co] dense tensor containing Vs.
|
|
"""
|
|
...
|
|
|
|
@overload
|
|
def sparse_scaled_dot_product_attention(q: torch.Tensor, k: SparseTensor, v: SparseTensor) -> torch.Tensor:
|
|
"""
|
|
Apply scaled dot product attention to a sparse tensor.
|
|
|
|
Args:
|
|
q (torch.Tensor): A [N, L, H, Ci] dense tensor containing Qs.
|
|
k (SparseTensor): A [N, *, H, Ci] sparse tensor containing Ks.
|
|
v (SparseTensor): A [N, *, H, Co] sparse tensor containing Vs.
|
|
"""
|
|
...
|
|
|
|
def sparse_scaled_dot_product_attention(*args, **kwargs):
|
|
arg_names_dict = {
|
|
1: ['qkv'],
|
|
2: ['q', 'kv'],
|
|
3: ['q', 'k', 'v']
|
|
}
|
|
num_all_args = len(args) + len(kwargs)
|
|
assert num_all_args in arg_names_dict, f"Invalid number of arguments, got {num_all_args}, expected 1, 2, or 3"
|
|
for key in arg_names_dict[num_all_args][len(args):]:
|
|
assert key in kwargs, f"Missing argument {key}"
|
|
|
|
if num_all_args == 1:
|
|
qkv = args[0] if len(args) > 0 else kwargs['qkv']
|
|
assert isinstance(qkv, SparseTensor), f"qkv must be a SparseTensor, got {type(qkv)}"
|
|
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
|
|
device = qkv.device
|
|
|
|
s = qkv
|
|
q_seqlen = [qkv.layout[i].stop - qkv.layout[i].start for i in range(qkv.shape[0])]
|
|
kv_seqlen = q_seqlen
|
|
qkv = qkv.feats
|
|
|
|
elif num_all_args == 2:
|
|
q = args[0] if len(args) > 0 else kwargs['q']
|
|
kv = args[1] if len(args) > 1 else kwargs['kv']
|
|
assert isinstance(q, SparseTensor) and isinstance(kv, (SparseTensor, torch.Tensor)) or \
|
|
isinstance(q, torch.Tensor) and isinstance(kv, SparseTensor), \
|
|
f"Invalid types, got {type(q)} and {type(kv)}"
|
|
assert q.shape[0] == kv.shape[0], f"Batch size mismatch, got {q.shape[0]} and {kv.shape[0]}"
|
|
device = q.device
|
|
|
|
if isinstance(q, SparseTensor):
|
|
assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, C]"
|
|
s = q
|
|
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
|
|
q = q.feats
|
|
else:
|
|
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, C]"
|
|
s = None
|
|
N, L, H, C = q.shape
|
|
q_seqlen = [L] * N
|
|
q = q.reshape(N * L, H, C)
|
|
|
|
if isinstance(kv, SparseTensor):
|
|
assert len(kv.shape) == 4 and kv.shape[1] == 2, f"Invalid shape for kv, got {kv.shape}, expected [N, *, 2, H, C]"
|
|
kv_seqlen = [kv.layout[i].stop - kv.layout[i].start for i in range(kv.shape[0])]
|
|
kv = kv.feats
|
|
else:
|
|
assert len(kv.shape) == 5, f"Invalid shape for kv, got {kv.shape}, expected [N, L, 2, H, C]"
|
|
N, L, _, H, C = kv.shape
|
|
kv_seqlen = [L] * N
|
|
kv = kv.reshape(N * L, 2, H, C)
|
|
|
|
elif num_all_args == 3:
|
|
q = args[0] if len(args) > 0 else kwargs['q']
|
|
k = args[1] if len(args) > 1 else kwargs['k']
|
|
v = args[2] if len(args) > 2 else kwargs['v']
|
|
assert isinstance(q, SparseTensor) and isinstance(k, (SparseTensor, torch.Tensor)) and type(k) == type(v) or \
|
|
isinstance(q, torch.Tensor) and isinstance(k, SparseTensor) and isinstance(v, SparseTensor), \
|
|
f"Invalid types, got {type(q)}, {type(k)}, and {type(v)}"
|
|
assert q.shape[0] == k.shape[0] == v.shape[0], f"Batch size mismatch, got {q.shape[0]}, {k.shape[0]}, and {v.shape[0]}"
|
|
device = q.device
|
|
|
|
if isinstance(q, SparseTensor):
|
|
assert len(q.shape) == 3, f"Invalid shape for q, got {q.shape}, expected [N, *, H, Ci]"
|
|
s = q
|
|
q_seqlen = [q.layout[i].stop - q.layout[i].start for i in range(q.shape[0])]
|
|
q = q.feats
|
|
else:
|
|
assert len(q.shape) == 4, f"Invalid shape for q, got {q.shape}, expected [N, L, H, Ci]"
|
|
s = None
|
|
N, L, H, CI = q.shape
|
|
q_seqlen = [L] * N
|
|
q = q.reshape(N * L, H, CI)
|
|
|
|
if isinstance(k, SparseTensor):
|
|
assert len(k.shape) == 3, f"Invalid shape for k, got {k.shape}, expected [N, *, H, Ci]"
|
|
assert len(v.shape) == 3, f"Invalid shape for v, got {v.shape}, expected [N, *, H, Co]"
|
|
kv_seqlen = [k.layout[i].stop - k.layout[i].start for i in range(k.shape[0])]
|
|
k = k.feats
|
|
v = v.feats
|
|
else:
|
|
assert len(k.shape) == 4, f"Invalid shape for k, got {k.shape}, expected [N, L, H, Ci]"
|
|
assert len(v.shape) == 4, f"Invalid shape for v, got {v.shape}, expected [N, L, H, Co]"
|
|
N, L, H, CI, CO = *k.shape, v.shape[-1]
|
|
kv_seqlen = [L] * N
|
|
k = k.reshape(N * L, H, CI)
|
|
v = v.reshape(N * L, H, CO)
|
|
|
|
if DEBUG:
|
|
if s is not None:
|
|
for i in range(s.shape[0]):
|
|
assert (s.coords[s.layout[i]] == i).all(), f"SparseScaledDotProductSelfAttention: batch index mismatch"
|
|
if num_all_args in [2, 3]:
|
|
assert q.shape[:2] == [1, sum(q_seqlen)], f"SparseScaledDotProductSelfAttention: q shape mismatch"
|
|
if num_all_args == 3:
|
|
assert k.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: k shape mismatch"
|
|
assert v.shape[:2] == [1, sum(kv_seqlen)], f"SparseScaledDotProductSelfAttention: v shape mismatch"
|
|
|
|
if ATTN == 'xformers':
|
|
if num_all_args == 1:
|
|
q, k, v = qkv.unbind(dim=1)
|
|
elif num_all_args == 2:
|
|
k, v = kv.unbind(dim=1)
|
|
q = q.unsqueeze(0)
|
|
k = k.unsqueeze(0)
|
|
v = v.unsqueeze(0)
|
|
mask = xops.fmha.BlockDiagonalMask.from_seqlens(q_seqlen, kv_seqlen)
|
|
out = xops.memory_efficient_attention(q, k, v, mask)[0]
|
|
elif ATTN == 'flash_attn':
|
|
cu_seqlens_q = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(q_seqlen), dim=0)]).int().to(device)
|
|
if num_all_args in [2, 3]:
|
|
cu_seqlens_kv = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(kv_seqlen), dim=0)]).int().to(device)
|
|
if num_all_args == 1:
|
|
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens_q, max(q_seqlen))
|
|
elif num_all_args == 2:
|
|
out = flash_attn.flash_attn_varlen_kvpacked_func(q, kv, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
|
|
elif num_all_args == 3:
|
|
out = flash_attn.flash_attn_varlen_func(q, k, v, cu_seqlens_q, cu_seqlens_kv, max(q_seqlen), max(kv_seqlen))
|
|
else:
|
|
raise ValueError(f"Unknown attention module: {ATTN}")
|
|
|
|
if s is not None:
|
|
return s.replace(out)
|
|
else:
|
|
return out.reshape(N, L, H, -1)
|
|
|