|
from typing import *
|
|
import torch
|
|
import math
|
|
from .. import SparseTensor
|
|
from .. import DEBUG, ATTN
|
|
|
|
if ATTN == 'xformers':
|
|
import xformers.ops as xops
|
|
elif ATTN == 'flash_attn':
|
|
import flash_attn
|
|
else:
|
|
raise ValueError(f"Unknown attention module: {ATTN}")
|
|
|
|
|
|
__all__ = [
|
|
'sparse_windowed_scaled_dot_product_self_attention',
|
|
]
|
|
|
|
|
|
def calc_window_partition(
|
|
tensor: SparseTensor,
|
|
window_size: Union[int, Tuple[int, ...]],
|
|
shift_window: Union[int, Tuple[int, ...]] = 0
|
|
) -> Tuple[torch.Tensor, torch.Tensor, List[int], List[int]]:
|
|
"""
|
|
Calculate serialization and partitioning for a set of coordinates.
|
|
|
|
Args:
|
|
tensor (SparseTensor): The input tensor.
|
|
window_size (int): The window size to use.
|
|
shift_window (Tuple[int, ...]): The shift of serialized coordinates.
|
|
|
|
Returns:
|
|
(torch.Tensor): Forwards indices.
|
|
(torch.Tensor): Backwards indices.
|
|
(List[int]): Sequence lengths.
|
|
(List[int]): Sequence batch indices.
|
|
"""
|
|
DIM = tensor.coords.shape[1] - 1
|
|
shift_window = (shift_window,) * DIM if isinstance(shift_window, int) else shift_window
|
|
window_size = (window_size,) * DIM if isinstance(window_size, int) else window_size
|
|
shifted_coords = tensor.coords.clone().detach()
|
|
shifted_coords[:, 1:] += torch.tensor(shift_window, device=tensor.device, dtype=torch.int32).unsqueeze(0)
|
|
|
|
MAX_COORDS = shifted_coords[:, 1:].max(dim=0).values.tolist()
|
|
NUM_WINDOWS = [math.ceil((mc + 1) / ws) for mc, ws in zip(MAX_COORDS, window_size)]
|
|
OFFSET = torch.cumprod(torch.tensor([1] + NUM_WINDOWS[::-1]), dim=0).tolist()[::-1]
|
|
|
|
shifted_coords[:, 1:] //= torch.tensor(window_size, device=tensor.device, dtype=torch.int32).unsqueeze(0)
|
|
shifted_indices = (shifted_coords * torch.tensor(OFFSET, device=tensor.device, dtype=torch.int32).unsqueeze(0)).sum(dim=1)
|
|
fwd_indices = torch.argsort(shifted_indices)
|
|
bwd_indices = torch.empty_like(fwd_indices)
|
|
bwd_indices[fwd_indices] = torch.arange(fwd_indices.shape[0], device=tensor.device)
|
|
seq_lens = torch.bincount(shifted_indices)
|
|
seq_batch_indices = torch.arange(seq_lens.shape[0], device=tensor.device, dtype=torch.int32) // OFFSET[0]
|
|
mask = seq_lens != 0
|
|
seq_lens = seq_lens[mask].tolist()
|
|
seq_batch_indices = seq_batch_indices[mask].tolist()
|
|
|
|
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices
|
|
|
|
|
|
def sparse_windowed_scaled_dot_product_self_attention(
|
|
qkv: SparseTensor,
|
|
window_size: int,
|
|
shift_window: Tuple[int, int, int] = (0, 0, 0)
|
|
) -> SparseTensor:
|
|
"""
|
|
Apply windowed scaled dot product self attention to a sparse tensor.
|
|
|
|
Args:
|
|
qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs.
|
|
window_size (int): The window size to use.
|
|
shift_window (Tuple[int, int, int]): The shift of serialized coordinates.
|
|
shift (int): The shift to use.
|
|
"""
|
|
assert len(qkv.shape) == 4 and qkv.shape[1] == 3, f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]"
|
|
|
|
serialization_spatial_cache_name = f'window_partition_{window_size}_{shift_window}'
|
|
serialization_spatial_cache = qkv.get_spatial_cache(serialization_spatial_cache_name)
|
|
if serialization_spatial_cache is None:
|
|
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_window_partition(qkv, window_size, shift_window)
|
|
qkv.register_spatial_cache(serialization_spatial_cache_name, (fwd_indices, bwd_indices, seq_lens, seq_batch_indices))
|
|
else:
|
|
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = serialization_spatial_cache
|
|
|
|
M = fwd_indices.shape[0]
|
|
T = qkv.feats.shape[0]
|
|
H = qkv.feats.shape[2]
|
|
C = qkv.feats.shape[3]
|
|
|
|
qkv_feats = qkv.feats[fwd_indices]
|
|
|
|
if DEBUG:
|
|
start = 0
|
|
qkv_coords = qkv.coords[fwd_indices]
|
|
for i in range(len(seq_lens)):
|
|
seq_coords = qkv_coords[start:start+seq_lens[i]]
|
|
assert (seq_coords[:, 0] == seq_batch_indices[i]).all(), f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch"
|
|
assert (seq_coords[:, 1:].max(dim=0).values - seq_coords[:, 1:].min(dim=0).values < window_size).all(), \
|
|
f"SparseWindowedScaledDotProductSelfAttention: window size exceeded"
|
|
start += seq_lens[i]
|
|
|
|
if all([seq_len == window_size for seq_len in seq_lens]):
|
|
B = len(seq_lens)
|
|
N = window_size
|
|
qkv_feats = qkv_feats.reshape(B, N, 3, H, C)
|
|
if ATTN == 'xformers':
|
|
q, k, v = qkv_feats.unbind(dim=2)
|
|
out = xops.memory_efficient_attention(q, k, v)
|
|
elif ATTN == 'flash_attn':
|
|
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats)
|
|
else:
|
|
raise ValueError(f"Unknown attention module: {ATTN}")
|
|
out = out.reshape(B * N, H, C)
|
|
else:
|
|
if ATTN == 'xformers':
|
|
q, k, v = qkv_feats.unbind(dim=1)
|
|
q = q.unsqueeze(0)
|
|
k = k.unsqueeze(0)
|
|
v = v.unsqueeze(0)
|
|
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens)
|
|
out = xops.memory_efficient_attention(q, k, v, mask)[0]
|
|
elif ATTN == 'flash_attn':
|
|
cu_seqlens = torch.cat([torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], dim=0) \
|
|
.to(qkv.device).int()
|
|
out = flash_attn.flash_attn_varlen_qkvpacked_func(qkv_feats, cu_seqlens, max(seq_lens))
|
|
|
|
out = out[bwd_indices]
|
|
|
|
if DEBUG:
|
|
qkv_coords = qkv_coords[bwd_indices]
|
|
assert torch.equal(qkv_coords, qkv.coords), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch"
|
|
|
|
return qkv.replace(out)
|
|
|