|
import torch
|
|
import torch.nn as nn
|
|
from .. import SparseTensor
|
|
from .. import DEBUG
|
|
from . import SPCONV_ALGO
|
|
|
|
class SparseConv3d(nn.Module):
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, padding=None, bias=True, indice_key=None):
|
|
super(SparseConv3d, self).__init__()
|
|
if 'spconv' not in globals():
|
|
import spconv.pytorch as spconv
|
|
algo = None
|
|
if SPCONV_ALGO == 'native':
|
|
algo = spconv.ConvAlgo.Native
|
|
elif SPCONV_ALGO == 'implicit_gemm':
|
|
algo = spconv.ConvAlgo.MaskImplicitGemm
|
|
if stride == 1 and (padding is None):
|
|
self.conv = spconv.SubMConv3d(in_channels, out_channels, kernel_size, dilation=dilation, bias=bias, indice_key=indice_key, algo=algo)
|
|
else:
|
|
self.conv = spconv.SparseConv3d(in_channels, out_channels, kernel_size, stride=stride, dilation=dilation, padding=padding, bias=bias, indice_key=indice_key, algo=algo)
|
|
self.stride = tuple(stride) if isinstance(stride, (list, tuple)) else (stride, stride, stride)
|
|
self.padding = padding
|
|
|
|
def forward(self, x: SparseTensor) -> SparseTensor:
|
|
spatial_changed = any(s != 1 for s in self.stride) or (self.padding is not None)
|
|
new_data = self.conv(x.data)
|
|
new_shape = [x.shape[0], self.conv.out_channels]
|
|
new_layout = None if spatial_changed else x.layout
|
|
|
|
if spatial_changed and (x.shape[0] != 1):
|
|
|
|
fwd = new_data.indices[:, 0].argsort()
|
|
bwd = torch.zeros_like(fwd).scatter_(0, fwd, torch.arange(fwd.shape[0], device=fwd.device))
|
|
sorted_feats = new_data.features[fwd]
|
|
sorted_coords = new_data.indices[fwd]
|
|
unsorted_data = new_data
|
|
new_data = spconv.SparseConvTensor(sorted_feats, sorted_coords, unsorted_data.spatial_shape, unsorted_data.batch_size)
|
|
|
|
out = SparseTensor(
|
|
new_data, shape=torch.Size(new_shape), layout=new_layout,
|
|
scale=tuple([s * stride for s, stride in zip(x._scale, self.stride)]),
|
|
spatial_cache=x._spatial_cache,
|
|
)
|
|
|
|
if spatial_changed and (x.shape[0] != 1):
|
|
out.register_spatial_cache(f'conv_{self.stride}_unsorted_data', unsorted_data)
|
|
out.register_spatial_cache(f'conv_{self.stride}_sort_bwd', bwd)
|
|
|
|
return out
|
|
|
|
|
|
class SparseInverseConv3d(nn.Module):
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
|
|
super(SparseInverseConv3d, self).__init__()
|
|
if 'spconv' not in globals():
|
|
import spconv.pytorch as spconv
|
|
self.conv = spconv.SparseInverseConv3d(in_channels, out_channels, kernel_size, bias=bias, indice_key=indice_key)
|
|
self.stride = tuple(stride) if isinstance(stride, (list, tuple)) else (stride, stride, stride)
|
|
|
|
def forward(self, x: SparseTensor) -> SparseTensor:
|
|
spatial_changed = any(s != 1 for s in self.stride)
|
|
if spatial_changed:
|
|
|
|
data = x.get_spatial_cache(f'conv_{self.stride}_unsorted_data')
|
|
bwd = x.get_spatial_cache(f'conv_{self.stride}_sort_bwd')
|
|
data = data.replace_feature(x.feats[bwd])
|
|
if DEBUG:
|
|
assert torch.equal(data.indices, x.coords[bwd]), 'Recover the original order failed'
|
|
else:
|
|
data = x.data
|
|
|
|
new_data = self.conv(data)
|
|
new_shape = [x.shape[0], self.conv.out_channels]
|
|
new_layout = None if spatial_changed else x.layout
|
|
out = SparseTensor(
|
|
new_data, shape=torch.Size(new_shape), layout=new_layout,
|
|
scale=tuple([s // stride for s, stride in zip(x._scale, self.stride)]),
|
|
spatial_cache=x._spatial_cache,
|
|
)
|
|
return out
|
|
|