|
import torch
|
|
import torch.nn as nn
|
|
from .. import SparseTensor
|
|
|
|
|
|
class SparseConv3d(nn.Module):
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
|
|
super(SparseConv3d, self).__init__()
|
|
if 'torchsparse' not in globals():
|
|
import torchsparse
|
|
self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias)
|
|
|
|
def forward(self, x: SparseTensor) -> SparseTensor:
|
|
out = self.conv(x.data)
|
|
new_shape = [x.shape[0], self.conv.out_channels]
|
|
out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
|
|
out._spatial_cache = x._spatial_cache
|
|
out._scale = tuple([s * stride for s, stride in zip(x._scale, self.conv.stride)])
|
|
return out
|
|
|
|
|
|
class SparseInverseConv3d(nn.Module):
|
|
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
|
|
super(SparseInverseConv3d, self).__init__()
|
|
if 'torchsparse' not in globals():
|
|
import torchsparse
|
|
self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias, transposed=True)
|
|
|
|
def forward(self, x: SparseTensor) -> SparseTensor:
|
|
out = self.conv(x.data)
|
|
new_shape = [x.shape[0], self.conv.out_channels]
|
|
out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
|
|
out._spatial_cache = x._spatial_cache
|
|
out._scale = tuple([s // stride for s, stride in zip(x._scale, self.conv.stride)])
|
|
return out
|
|
|
|
|
|
|
|
|