|
from typing import *
|
|
import torch
|
|
import torch.nn as nn
|
|
from ..attention import MultiHeadAttention
|
|
from ..norm import LayerNorm32
|
|
|
|
|
|
class AbsolutePositionEmbedder(nn.Module):
|
|
"""
|
|
Embeds spatial positions into vector representations.
|
|
"""
|
|
def __init__(self, channels: int, in_channels: int = 3):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.in_channels = in_channels
|
|
self.freq_dim = channels // in_channels // 2
|
|
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
|
|
self.freqs = 1.0 / (10000 ** self.freqs)
|
|
|
|
def _sin_cos_embedding(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Create sinusoidal position embeddings.
|
|
|
|
Args:
|
|
x: a 1-D Tensor of N indices
|
|
|
|
Returns:
|
|
an (N, D) Tensor of positional embeddings.
|
|
"""
|
|
self.freqs = self.freqs.to(x.device)
|
|
out = torch.outer(x, self.freqs)
|
|
out = torch.cat([torch.sin(out), torch.cos(out)], dim=-1)
|
|
return out
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
x (torch.Tensor): (N, D) tensor of spatial positions
|
|
"""
|
|
N, D = x.shape
|
|
assert D == self.in_channels, "Input dimension must match number of input channels"
|
|
embed = self._sin_cos_embedding(x.reshape(-1))
|
|
embed = embed.reshape(N, -1)
|
|
if embed.shape[1] < self.channels:
|
|
embed = torch.cat([embed, torch.zeros(N, self.channels - embed.shape[1], device=embed.device)], dim=-1)
|
|
return embed
|
|
|
|
|
|
class FeedForwardNet(nn.Module):
|
|
def __init__(self, channels: int, mlp_ratio: float = 4.0):
|
|
super().__init__()
|
|
self.mlp = nn.Sequential(
|
|
nn.Linear(channels, int(channels * mlp_ratio)),
|
|
nn.GELU(approximate="tanh"),
|
|
nn.Linear(int(channels * mlp_ratio), channels),
|
|
)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
return self.mlp(x)
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
"""
|
|
Transformer block (MSA + FFN).
|
|
"""
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
num_heads: int,
|
|
mlp_ratio: float = 4.0,
|
|
attn_mode: Literal["full", "windowed"] = "full",
|
|
window_size: Optional[int] = None,
|
|
shift_window: Optional[int] = None,
|
|
use_checkpoint: bool = False,
|
|
use_rope: bool = False,
|
|
qk_rms_norm: bool = False,
|
|
qkv_bias: bool = True,
|
|
ln_affine: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.use_checkpoint = use_checkpoint
|
|
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
|
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
|
self.attn = MultiHeadAttention(
|
|
channels,
|
|
num_heads=num_heads,
|
|
attn_mode=attn_mode,
|
|
window_size=window_size,
|
|
shift_window=shift_window,
|
|
qkv_bias=qkv_bias,
|
|
use_rope=use_rope,
|
|
qk_rms_norm=qk_rms_norm,
|
|
)
|
|
self.mlp = FeedForwardNet(
|
|
channels,
|
|
mlp_ratio=mlp_ratio,
|
|
)
|
|
|
|
def _forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
h = self.norm1(x)
|
|
h = self.attn(h)
|
|
x = x + h
|
|
h = self.norm2(x)
|
|
h = self.mlp(h)
|
|
x = x + h
|
|
return x
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
if self.use_checkpoint:
|
|
return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False)
|
|
else:
|
|
return self._forward(x)
|
|
|
|
|
|
class TransformerCrossBlock(nn.Module):
|
|
"""
|
|
Transformer cross-attention block (MSA + MCA + FFN).
|
|
"""
|
|
def __init__(
|
|
self,
|
|
channels: int,
|
|
ctx_channels: int,
|
|
num_heads: int,
|
|
mlp_ratio: float = 4.0,
|
|
attn_mode: Literal["full", "windowed"] = "full",
|
|
window_size: Optional[int] = None,
|
|
shift_window: Optional[Tuple[int, int, int]] = None,
|
|
use_checkpoint: bool = False,
|
|
use_rope: bool = False,
|
|
qk_rms_norm: bool = False,
|
|
qk_rms_norm_cross: bool = False,
|
|
qkv_bias: bool = True,
|
|
ln_affine: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.use_checkpoint = use_checkpoint
|
|
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
|
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
|
self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
|
|
self.self_attn = MultiHeadAttention(
|
|
channels,
|
|
num_heads=num_heads,
|
|
type="self",
|
|
attn_mode=attn_mode,
|
|
window_size=window_size,
|
|
shift_window=shift_window,
|
|
qkv_bias=qkv_bias,
|
|
use_rope=use_rope,
|
|
qk_rms_norm=qk_rms_norm,
|
|
)
|
|
self.cross_attn = MultiHeadAttention(
|
|
channels,
|
|
ctx_channels=ctx_channels,
|
|
num_heads=num_heads,
|
|
type="cross",
|
|
attn_mode="full",
|
|
qkv_bias=qkv_bias,
|
|
qk_rms_norm=qk_rms_norm_cross,
|
|
)
|
|
self.mlp = FeedForwardNet(
|
|
channels,
|
|
mlp_ratio=mlp_ratio,
|
|
)
|
|
|
|
def _forward(self, x: torch.Tensor, context: torch.Tensor):
|
|
h = self.norm1(x)
|
|
h = self.self_attn(h)
|
|
x = x + h
|
|
h = self.norm2(x)
|
|
h = self.cross_attn(h, context)
|
|
x = x + h
|
|
h = self.norm3(x)
|
|
h = self.mlp(h)
|
|
x = x + h
|
|
return x
|
|
|
|
def forward(self, x: torch.Tensor, context: torch.Tensor):
|
|
if self.use_checkpoint:
|
|
return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False)
|
|
else:
|
|
return self._forward(x, context)
|
|
|