|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
|
|
DEFAULT_TRIVEC_CONFIG = {
|
|
'dim': 8,
|
|
'rank': 8,
|
|
}
|
|
|
|
DEFAULT_VOXEL_CONFIG = {
|
|
'solid': False,
|
|
}
|
|
|
|
DEFAULT_DECOPOLY_CONFIG = {
|
|
'degree': 8,
|
|
'rank': 16,
|
|
}
|
|
|
|
|
|
class DfsOctree:
|
|
"""
|
|
Sparse Voxel Octree (SVO) implementation for PyTorch.
|
|
Using Depth-First Search (DFS) order to store the octree.
|
|
DFS order suits rendering and ray tracing.
|
|
|
|
The structure and data are separatedly stored.
|
|
Structure is stored as a continuous array, each element is a 3*32 bits descriptor.
|
|
|-----------------------------------------|
|
|
| 0:3 bits | 4:31 bits |
|
|
| leaf num | unused |
|
|
|-----------------------------------------|
|
|
| 0:31 bits |
|
|
| child ptr |
|
|
|-----------------------------------------|
|
|
| 0:31 bits |
|
|
| data ptr |
|
|
|-----------------------------------------|
|
|
Each element represents a non-leaf node in the octree.
|
|
The valid mask is used to indicate whether the children are valid.
|
|
The leaf mask is used to indicate whether the children are leaf nodes.
|
|
The child ptr is used to point to the first non-leaf child. Non-leaf children descriptors are stored continuously from the child ptr.
|
|
The data ptr is used to point to the data of leaf children. Leaf children data are stored continuously from the data ptr.
|
|
|
|
There are also auxiliary arrays to store the additional structural information to facilitate parallel processing.
|
|
- Position: the position of the octree nodes.
|
|
- Depth: the depth of the octree nodes.
|
|
|
|
Args:
|
|
depth (int): the depth of the octree.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
depth,
|
|
aabb=[0,0,0,1,1,1],
|
|
sh_degree=2,
|
|
primitive='voxel',
|
|
primitive_config={},
|
|
device='cuda',
|
|
):
|
|
self.max_depth = depth
|
|
self.aabb = torch.tensor(aabb, dtype=torch.float32, device=device)
|
|
self.device = device
|
|
self.sh_degree = sh_degree
|
|
self.active_sh_degree = sh_degree
|
|
self.primitive = primitive
|
|
self.primitive_config = primitive_config
|
|
|
|
self.structure = torch.tensor([[8, 1, 0]], dtype=torch.int32, device=self.device)
|
|
self.position = torch.zeros((8, 3), dtype=torch.float32, device=self.device)
|
|
self.depth = torch.zeros((8, 1), dtype=torch.uint8, device=self.device)
|
|
self.position[:, 0] = torch.tensor([0.25, 0.75, 0.25, 0.75, 0.25, 0.75, 0.25, 0.75], device=self.device)
|
|
self.position[:, 1] = torch.tensor([0.25, 0.25, 0.75, 0.75, 0.25, 0.25, 0.75, 0.75], device=self.device)
|
|
self.position[:, 2] = torch.tensor([0.25, 0.25, 0.25, 0.25, 0.75, 0.75, 0.75, 0.75], device=self.device)
|
|
self.depth[:, 0] = 1
|
|
|
|
self.data = ['position', 'depth']
|
|
self.param_names = []
|
|
|
|
if primitive == 'voxel':
|
|
self.features_dc = torch.zeros((8, 1, 3), dtype=torch.float32, device=self.device)
|
|
self.features_ac = torch.zeros((8, (sh_degree+1)**2-1, 3), dtype=torch.float32, device=self.device)
|
|
self.data += ['features_dc', 'features_ac']
|
|
self.param_names += ['features_dc', 'features_ac']
|
|
if not primitive_config.get('solid', False):
|
|
self.density = torch.zeros((8, 1), dtype=torch.float32, device=self.device)
|
|
self.data.append('density')
|
|
self.param_names.append('density')
|
|
elif primitive == 'gaussian':
|
|
self.features_dc = torch.zeros((8, 1, 3), dtype=torch.float32, device=self.device)
|
|
self.features_ac = torch.zeros((8, (sh_degree+1)**2-1, 3), dtype=torch.float32, device=self.device)
|
|
self.opacity = torch.zeros((8, 1), dtype=torch.float32, device=self.device)
|
|
self.data += ['features_dc', 'features_ac', 'opacity']
|
|
self.param_names += ['features_dc', 'features_ac', 'opacity']
|
|
elif primitive == 'trivec':
|
|
self.trivec = torch.zeros((8, primitive_config['rank'], 3, primitive_config['dim']), dtype=torch.float32, device=self.device)
|
|
self.density = torch.zeros((8, primitive_config['rank']), dtype=torch.float32, device=self.device)
|
|
self.features_dc = torch.zeros((8, primitive_config['rank'], 1, 3), dtype=torch.float32, device=self.device)
|
|
self.features_ac = torch.zeros((8, primitive_config['rank'], (sh_degree+1)**2-1, 3), dtype=torch.float32, device=self.device)
|
|
self.density_shift = 0
|
|
self.data += ['trivec', 'density', 'features_dc', 'features_ac']
|
|
self.param_names += ['trivec', 'density', 'features_dc', 'features_ac']
|
|
elif primitive == 'decoupoly':
|
|
self.decoupoly_V = torch.zeros((8, primitive_config['rank'], 3), dtype=torch.float32, device=self.device)
|
|
self.decoupoly_g = torch.zeros((8, primitive_config['rank'], primitive_config['degree']), dtype=torch.float32, device=self.device)
|
|
self.density = torch.zeros((8, primitive_config['rank']), dtype=torch.float32, device=self.device)
|
|
self.features_dc = torch.zeros((8, primitive_config['rank'], 1, 3), dtype=torch.float32, device=self.device)
|
|
self.features_ac = torch.zeros((8, primitive_config['rank'], (sh_degree+1)**2-1, 3), dtype=torch.float32, device=self.device)
|
|
self.density_shift = 0
|
|
self.data += ['decoupoly_V', 'decoupoly_g', 'density', 'features_dc', 'features_ac']
|
|
self.param_names += ['decoupoly_V', 'decoupoly_g', 'density', 'features_dc', 'features_ac']
|
|
|
|
self.setup_functions()
|
|
|
|
def setup_functions(self):
|
|
self.density_activation = (lambda x: torch.exp(x - 2)) if self.primitive != 'trivec' else (lambda x: x)
|
|
self.opacity_activation = lambda x: torch.sigmoid(x - 6)
|
|
self.inverse_opacity_activation = lambda x: torch.log(x / (1 - x)) + 6
|
|
self.color_activation = lambda x: torch.sigmoid(x)
|
|
|
|
@property
|
|
def num_non_leaf_nodes(self):
|
|
return self.structure.shape[0]
|
|
|
|
@property
|
|
def num_leaf_nodes(self):
|
|
return self.depth.shape[0]
|
|
|
|
@property
|
|
def cur_depth(self):
|
|
return self.depth.max().item()
|
|
|
|
@property
|
|
def occupancy(self):
|
|
return self.num_leaf_nodes / 8 ** self.cur_depth
|
|
|
|
@property
|
|
def get_xyz(self):
|
|
return self.position
|
|
|
|
@property
|
|
def get_depth(self):
|
|
return self.depth
|
|
|
|
@property
|
|
def get_density(self):
|
|
if self.primitive == 'voxel' and self.voxel_config['solid']:
|
|
return torch.full((self.position.shape[0], 1), 1000, dtype=torch.float32, device=self.device)
|
|
return self.density_activation(self.density)
|
|
|
|
@property
|
|
def get_opacity(self):
|
|
return self.opacity_activation(self.density)
|
|
|
|
@property
|
|
def get_trivec(self):
|
|
return self.trivec
|
|
|
|
@property
|
|
def get_decoupoly(self):
|
|
return F.normalize(self.decoupoly_V, dim=-1), self.decoupoly_g
|
|
|
|
@property
|
|
def get_color(self):
|
|
return self.color_activation(self.colors)
|
|
|
|
@property
|
|
def get_features(self):
|
|
if self.sh_degree == 0:
|
|
return self.features_dc
|
|
return torch.cat([self.features_dc, self.features_ac], dim=-2)
|
|
|
|
def state_dict(self):
|
|
ret = {'structure': self.structure, 'position': self.position, 'depth': self.depth, 'sh_degree': self.sh_degree, 'active_sh_degree': self.active_sh_degree, 'trivec_config': self.trivec_config, 'voxel_config': self.voxel_config, 'primitive': self.primitive}
|
|
if hasattr(self, 'density_shift'):
|
|
ret['density_shift'] = self.density_shift
|
|
for data in set(self.data + self.param_names):
|
|
if not isinstance(getattr(self, data), nn.Module):
|
|
ret[data] = getattr(self, data)
|
|
else:
|
|
ret[data] = getattr(self, data).state_dict()
|
|
return ret
|
|
|
|
def load_state_dict(self, state_dict):
|
|
keys = list(set(self.data + self.param_names + list(state_dict.keys()) + ['structure', 'position', 'depth']))
|
|
for key in keys:
|
|
if key not in state_dict:
|
|
print(f"Warning: key {key} not found in the state_dict.")
|
|
continue
|
|
try:
|
|
if not isinstance(getattr(self, key), nn.Module):
|
|
setattr(self, key, state_dict[key])
|
|
else:
|
|
getattr(self, key).load_state_dict(state_dict[key])
|
|
except Exception as e:
|
|
print(e)
|
|
raise ValueError(f"Error loading key {key}.")
|
|
|
|
def gather_from_leaf_children(self, data):
|
|
"""
|
|
Gather the data from the leaf children.
|
|
|
|
Args:
|
|
data (torch.Tensor): the data to gather. The first dimension should be the number of leaf nodes.
|
|
"""
|
|
leaf_cnt = self.structure[:, 0]
|
|
leaf_cnt_masks = [leaf_cnt == i for i in range(1, 9)]
|
|
ret = torch.zeros((self.num_non_leaf_nodes,), dtype=data.dtype, device=self.device)
|
|
for i in range(8):
|
|
if leaf_cnt_masks[i].sum() == 0:
|
|
continue
|
|
start = self.structure[leaf_cnt_masks[i], 2]
|
|
for j in range(i+1):
|
|
ret[leaf_cnt_masks[i]] += data[start + j]
|
|
return ret
|
|
|
|
def gather_from_non_leaf_children(self, data):
|
|
"""
|
|
Gather the data from the non-leaf children.
|
|
|
|
Args:
|
|
data (torch.Tensor): the data to gather. The first dimension should be the number of leaf nodes.
|
|
"""
|
|
non_leaf_cnt = 8 - self.structure[:, 0]
|
|
non_leaf_cnt_masks = [non_leaf_cnt == i for i in range(1, 9)]
|
|
ret = torch.zeros_like(data, device=self.device)
|
|
for i in range(8):
|
|
if non_leaf_cnt_masks[i].sum() == 0:
|
|
continue
|
|
start = self.structure[non_leaf_cnt_masks[i], 1]
|
|
for j in range(i+1):
|
|
ret[non_leaf_cnt_masks[i]] += data[start + j]
|
|
return ret
|
|
|
|
def structure_control(self, mask):
|
|
"""
|
|
Control the structure of the octree.
|
|
|
|
Args:
|
|
mask (torch.Tensor): the mask to control the structure. 1 for subdivide, -1 for merge, 0 for keep.
|
|
"""
|
|
|
|
mask[self.depth.squeeze() == self.max_depth] = torch.clamp_max(mask[self.depth.squeeze() == self.max_depth], 0)
|
|
|
|
mask[self.depth.squeeze() == 1] = torch.clamp_min(mask[self.depth.squeeze() == 1], 0)
|
|
|
|
|
|
structre_ctrl = self.gather_from_leaf_children(mask)
|
|
structre_ctrl[structre_ctrl==-8] = -1
|
|
|
|
new_leaf_num = self.structure[:, 0].clone()
|
|
|
|
structre_valid = structre_ctrl >= 0
|
|
new_leaf_num[structre_valid] -= structre_ctrl[structre_valid]
|
|
structre_delete = structre_ctrl < 0
|
|
merged_nodes = self.gather_from_non_leaf_children(structre_delete.int())
|
|
new_leaf_num += merged_nodes
|
|
|
|
|
|
mem_offset = torch.zeros((self.num_non_leaf_nodes + 1,), dtype=torch.int32, device=self.device)
|
|
mem_offset.index_add_(0, self.structure[structre_valid, 1], structre_ctrl[structre_valid])
|
|
mem_offset[:-1] -= structre_delete.int()
|
|
new_structre_idx = torch.arange(0, self.num_non_leaf_nodes + 1, dtype=torch.int32, device=self.device) + mem_offset.cumsum(0)
|
|
new_structure_length = new_structre_idx[-1].item()
|
|
new_structre_idx = new_structre_idx[:-1]
|
|
new_structure = torch.empty((new_structure_length, 3), dtype=torch.int32, device=self.device)
|
|
new_structure[new_structre_idx[structre_valid], 0] = new_leaf_num[structre_valid]
|
|
|
|
|
|
new_node_mask = torch.ones((new_structure_length,), dtype=torch.bool, device=self.device)
|
|
new_node_mask[new_structre_idx[structre_valid]] = False
|
|
new_structure[new_node_mask, 0] = 8
|
|
new_node_num = new_node_mask.sum().item()
|
|
|
|
|
|
non_leaf_cnt = 8 - new_structure[:, 0]
|
|
new_child_ptr = torch.cat([torch.zeros((1,), dtype=torch.int32, device=self.device), non_leaf_cnt.cumsum(0)[:-1]])
|
|
new_structure[:, 1] = new_child_ptr + 1
|
|
|
|
|
|
leaf_cnt = torch.zeros((new_structure_length,), dtype=torch.int32, device=self.device)
|
|
leaf_cnt.index_add_(0, new_structre_idx, self.structure[:, 0])
|
|
old_data_ptr = torch.cat([torch.zeros((1,), dtype=torch.int32, device=self.device), leaf_cnt.cumsum(0)[:-1]])
|
|
|
|
|
|
subdivide_mask = mask == 1
|
|
merge_mask = mask == -1
|
|
data_valid = ~(subdivide_mask | merge_mask)
|
|
mem_offset = torch.zeros((self.num_leaf_nodes + 1,), dtype=torch.int32, device=self.device)
|
|
mem_offset.index_add_(0, old_data_ptr[new_node_mask], torch.full((new_node_num,), 8, dtype=torch.int32, device=self.device))
|
|
mem_offset[:-1] -= subdivide_mask.int()
|
|
mem_offset[:-1] -= merge_mask.int()
|
|
mem_offset.index_add_(0, self.structure[structre_valid, 2], merged_nodes[structre_valid])
|
|
new_data_idx = torch.arange(0, self.num_leaf_nodes + 1, dtype=torch.int32, device=self.device) + mem_offset.cumsum(0)
|
|
new_data_length = new_data_idx[-1].item()
|
|
new_data_idx = new_data_idx[:-1]
|
|
new_data = {data: torch.empty((new_data_length,) + getattr(self, data).shape[1:], dtype=getattr(self, data).dtype, device=self.device) for data in self.data}
|
|
for data in self.data:
|
|
new_data[data][new_data_idx[data_valid]] = getattr(self, data)[data_valid]
|
|
|
|
|
|
leaf_cnt = new_structure[:, 0]
|
|
new_data_ptr = torch.cat([torch.zeros((1,), dtype=torch.int32, device=self.device), leaf_cnt.cumsum(0)[:-1]])
|
|
new_structure[:, 2] = new_data_ptr
|
|
|
|
|
|
|
|
if subdivide_mask.sum() > 0:
|
|
subdivide_data_ptr = new_structure[new_node_mask, 2]
|
|
for data in self.data:
|
|
for i in range(8):
|
|
if data == 'position':
|
|
offset = torch.tensor([i // 4, (i // 2) % 2, i % 2], dtype=torch.float32, device=self.device) - 0.5
|
|
scale = 2 ** (-1.0 - self.depth[subdivide_mask])
|
|
new_data['position'][subdivide_data_ptr + i] = self.position[subdivide_mask] + offset * scale
|
|
elif data == 'depth':
|
|
new_data['depth'][subdivide_data_ptr + i] = self.depth[subdivide_mask] + 1
|
|
elif data == 'opacity':
|
|
new_data['opacity'][subdivide_data_ptr + i] = self.inverse_opacity_activation(torch.sqrt(self.opacity_activation(self.opacity[subdivide_mask])))
|
|
elif data == 'trivec':
|
|
offset = torch.tensor([i // 4, (i // 2) % 2, i % 2], dtype=torch.float32, device=self.device) * 0.5
|
|
coord = (torch.linspace(0, 0.5, self.trivec.shape[-1], dtype=torch.float32, device=self.device)[None] + offset[:, None]).reshape(1, 3, self.trivec.shape[-1], 1)
|
|
axis = torch.linspace(0, 1, 3, dtype=torch.float32, device=self.device).reshape(1, 3, 1, 1).repeat(1, 1, self.trivec.shape[-1], 1)
|
|
coord = torch.stack([coord, axis], dim=3).reshape(1, 3, self.trivec.shape[-1], 2).expand(self.trivec[subdivide_mask].shape[0], -1, -1, -1) * 2 - 1
|
|
new_data['trivec'][subdivide_data_ptr + i] = F.grid_sample(self.trivec[subdivide_mask], coord, align_corners=True)
|
|
else:
|
|
new_data[data][subdivide_data_ptr + i] = getattr(self, data)[subdivide_mask]
|
|
|
|
if merge_mask.sum() > 0:
|
|
merge_data_ptr = torch.empty((merged_nodes.sum().item(),), dtype=torch.int32, device=self.device)
|
|
merge_nodes_cumsum = torch.cat([torch.zeros((1,), dtype=torch.int32, device=self.device), merged_nodes.cumsum(0)[:-1]])
|
|
for i in range(8):
|
|
merge_data_ptr[merge_nodes_cumsum[merged_nodes > i] + i] = new_structure[new_structre_idx[merged_nodes > i], 2] + i
|
|
old_merge_data_ptr = self.structure[structre_delete, 2]
|
|
for data in self.data:
|
|
if data == 'position':
|
|
scale = 2 ** (1.0 - self.depth[old_merge_data_ptr])
|
|
new_data['position'][merge_data_ptr] = ((self.position[old_merge_data_ptr] + 0.5) / scale).floor() * scale + 0.5 * scale - 0.5
|
|
elif data == 'depth':
|
|
new_data['depth'][merge_data_ptr] = self.depth[old_merge_data_ptr] - 1
|
|
elif data == 'opacity':
|
|
new_data['opacity'][subdivide_data_ptr + i] = self.inverse_opacity_activation(self.opacity_activation(self.opacity[subdivide_mask])**2)
|
|
elif data == 'trivec':
|
|
new_data['trivec'][merge_data_ptr] = self.trivec[old_merge_data_ptr]
|
|
else:
|
|
new_data[data][merge_data_ptr] = getattr(self, data)[old_merge_data_ptr]
|
|
|
|
|
|
self.structure = new_structure
|
|
for data in self.data:
|
|
setattr(self, data, new_data[data])
|
|
|
|
|
|
self.data_rearrange_buffer = {
|
|
'subdivide_mask': subdivide_mask,
|
|
'merge_mask': merge_mask,
|
|
'data_valid': data_valid,
|
|
'new_data_idx': new_data_idx,
|
|
'new_data_length': new_data_length,
|
|
'new_data': new_data
|
|
}
|
|
|