Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# Load a lightweight model | |
generator = pipeline("text2text-generation", model="facebook/bart-large", tokenizer="facebook/bart-large") | |
# Function to construct the anonymization prompt | |
def construct_prompt(input_text): | |
prompt = f""" | |
Please rewrite the input text by writting the text in double. | |
"{input_text}" | |
""" | |
return prompt.strip() | |
# Function to process the input text and generate the anonymized output | |
def anonymize_text(input_text): | |
# Construct the instruction prompt | |
prompt = construct_prompt(input_text) | |
# Generate the output using the model | |
response = generator(prompt, max_length=512, num_return_sequences=1) | |
generated_text = response[0]['generated_text'] | |
# Attempt to parse the JSON output | |
try: | |
result = eval(generated_text) # Convert the output string to a Python dictionary | |
anonymized_text = result.get("anonymized_text", input_text) | |
name_mapping = result.get("name_mapping", {}) | |
except Exception as e: | |
anonymized_text = input_text | |
name_mapping = {} | |
return anonymized_text, name_mapping | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Text Anonymizer") | |
gr.Markdown("Enter text containing personal names, and the model will anonymize it by replacing the names with pseudonyms. The app will also return a dictionary linking original names to their replacements.") | |
input_text = gr.Textbox(label="Input Text", placeholder="Enter text here...") | |
anonymized_text = gr.Textbox(label="Anonymized Text", interactive=False) | |
name_mapping = gr.JSON(label="Name Mapping") | |
def process_text(input_text): | |
return anonymize_text(input_text) | |
submit_button = gr.Button("Anonymize") | |
submit_button.click(process_text, inputs=[input_text], outputs=[anonymized_text, name_mapping]) | |
# Launch the app | |
demo.launch() |