Spaces:
Sleeping
Sleeping
from imagebind import data | |
import torch | |
from imagebind.models import imagebind_model | |
from imagebind.models.imagebind_model import ModalityType | |
import os | |
from PIL import Image | |
import streamlit as st | |
import tempfile | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# Instantiate model | |
model = imagebind_model.imagebind_huge(pretrained=True) | |
model.eval() | |
model.to(device) | |
text_list = ["An Advertisement(branding, text, promotions, lifestyle depiction, contextual cues, and visual composition)","Not an Advertisement"] | |
image_paths = [] | |
text = ['Advertisement Creative(Contains Text)', 'Not an Advertisement Creative(Contains No Text)', 'Simple Product Image and not an Advertisement)'] | |
st.title("Advertisement Detection using CLIP") | |
# Upload image | |
uploaded_image = st.file_uploader("Choose an image...", type= ["png", "jpg", "jpeg"]) | |
if uploaded_image is not None: | |
temp_dir = tempfile.mkdtemp() | |
path = os.path.join(temp_dir, uploaded_image.name) | |
with open(path, "wb") as f: | |
f.write(uploaded_image.getvalue()) | |
image_paths.append(path) | |
image = Image.open(uploaded_image) | |
st.image(image, caption="Uploaded Image.", use_column_width=True) | |
inputs = { | |
ModalityType.TEXT: data.load_and_transform_text(text_list, device), | |
ModalityType.VISION: data.load_and_transform_vision_data(image_paths, device), | |
} | |
with torch.no_grad(): | |
embeddings = model(inputs) | |
print( | |
"Vision x Text: ", | |
torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1), | |
) | |
st.write(torch.softmax(embeddings[ModalityType.VISION] @ embeddings[ModalityType.TEXT].T, dim=-1)) |