Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,62 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
# Load model directly
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("VietTung04/videberta-base-topic-classification")
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained("VietTung04/videberta-base-topic-classification")
|
8 |
+
|
9 |
+
def preprocess_fn(text):
|
10 |
+
stopword_path = 'vietnamese-stopwords.txt'
|
11 |
+
|
12 |
+
with open(stopword_path, 'r', encoding='utf-8') as file:
|
13 |
+
stopwords = file.read().splitlines()
|
14 |
+
|
15 |
+
def remove_stopwords(tokens):
|
16 |
+
return [word for word in tokens if word not in stopwords]
|
17 |
+
text = re.sub(r'http\S+', ' ', text) # Remove URLs
|
18 |
+
text = re.sub(r'#\w+', ' ', text) # Remove hashtags
|
19 |
+
text = re.sub(r'@\w+', ' ', text) # Remove mentions
|
20 |
+
text = re.sub(r'\d+', ' ', text) # Remove numbers
|
21 |
+
text = re.sub(r'[^\w\sđĐàÀảẢãÃáÁạẠăĂằẰẳẲẵẴắẮặẶâÂầẦẩẨẫẪấẤậẬèÈẻẺẽẼéÉẹẸêÊềỀểỂễỄếẾệỆìÌỉỈĩĨíÍịỊòÒỏỎõÕóÓọỌôÔồỒổỔỗỖốỐộỘơƠờỜởỞỡỠớỚợỢùÙủỦũŨúÚụỤưƯừỪửỬữỮứỨựỰỳỲỷỶỹỸýÝỵỴ]', ' ', text) # Remove special characters
|
22 |
+
# Tokenize Vietnamese text
|
23 |
+
tokens = word_tokenize(' '.join(text.split()).lower())
|
24 |
+
|
25 |
+
# Remove stop words
|
26 |
+
tokens = remove_stopwords(tokens)
|
27 |
+
|
28 |
+
return ' '.join(tokens)
|
29 |
+
|
30 |
+
def predict_topic(text):
|
31 |
+
inputs = tokenizer(
|
32 |
+
preprocess_fn(text),
|
33 |
+
truncation=True,
|
34 |
+
padding='max_length',
|
35 |
+
max_length=512,
|
36 |
+
add_special_tokens=True,
|
37 |
+
return_tensors='pt'
|
38 |
+
)
|
39 |
+
inputs = {key: value.to(device) for key, value in inputs.items()}
|
40 |
+
with torch.no_grad():
|
41 |
+
outputs = model(**inputs)
|
42 |
+
logits = outputs.logits
|
43 |
+
probabilities = torch.softmax(logits, dim=1).cpu().numpy()[0]
|
44 |
+
|
45 |
+
# Get the top 3 classes
|
46 |
+
top3_indices = probabilities.argsort()[-3:][::-1]
|
47 |
+
top3_probabilities = probabilities[top3_indices]
|
48 |
+
top3_classes = [model.config.id2label[idx] for idx in top3_indices] # Assuming your model has this attribute
|
49 |
+
|
50 |
+
return {top3_classes[i]: float(top3_probabilities[i]) for i in range(3)}
|
51 |
+
|
52 |
+
# Define the Gradio interface
|
53 |
+
iface = gr.Interface(
|
54 |
+
fn=predict_topic,
|
55 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."),
|
56 |
+
outputs=gr.Label(num_top_classes=3),
|
57 |
+
title="Text Classification",
|
58 |
+
description="Enter text to classify it into different categories and get the probability for each class."
|
59 |
+
)
|
60 |
+
|
61 |
+
# Launch the interface
|
62 |
+
iface.launch()
|