zhang-ziang commited on
Commit
00e3bbc
·
1 Parent(s): 60644d7

update model weight

Browse files
Files changed (2) hide show
  1. app.py +2 -2
  2. inference.py +4 -4
app.py CHANGED
@@ -8,7 +8,7 @@ from inference import *
8
  from utils import *
9
 
10
  from huggingface_hub import hf_hub_download
11
- ckpt_path = hf_hub_download(repo_id="Viglong/Orient-Anything", filename="croplargeEX03/dino_weight.pt", repo_type="model", cache_dir='./', resume_download=True)
12
  print(ckpt_path)
13
 
14
  save_path = './'
@@ -16,7 +16,7 @@ device = 'cpu'
16
  dino = DINOv2_MLP(
17
  dino_mode = 'large',
18
  in_dim = 1024,
19
- out_dim = 360+180+180+2,
20
  evaluate = True,
21
  mask_dino = False,
22
  frozen_back = False
 
8
  from utils import *
9
 
10
  from huggingface_hub import hf_hub_download
11
+ ckpt_path = hf_hub_download(repo_id="Viglong/Orient-Anything", filename="ronormsigma1/dino_weight.pt", repo_type="model", cache_dir='./', resume_download=True)
12
  print(ckpt_path)
13
 
14
  save_path = './'
 
16
  dino = DINOv2_MLP(
17
  dino_mode = 'large',
18
  in_dim = 1024,
19
+ out_dim = 360+180+360+2,
20
  evaluate = True,
21
  mask_dino = False,
22
  frozen_back = False
inference.py CHANGED
@@ -14,12 +14,12 @@ def get_3angle(image, dino, val_preprocess, device):
14
 
15
  gaus_ax_pred = torch.argmax(dino_pred[:, 0:360], dim=-1)
16
  gaus_pl_pred = torch.argmax(dino_pred[:, 360:360+180], dim=-1)
17
- gaus_ro_pred = torch.argmax(dino_pred[:, 360+180:360+180+180], dim=-1)
18
  confidence = F.softmax(dino_pred[:, -2:], dim=-1)[0][0]
19
  angles = torch.zeros(4)
20
  angles[0] = gaus_ax_pred
21
  angles[1] = gaus_pl_pred - 90
22
- angles[2] = gaus_ro_pred - 90
23
  angles[3] = confidence
24
  return angles
25
 
@@ -34,7 +34,7 @@ def get_3angle_infer_aug(origin_img, rm_bkg_img, dino, val_preprocess, device):
34
 
35
  gaus_ax_pred = torch.argmax(dino_pred[:, 0:360], dim=-1).to(torch.float32)
36
  gaus_pl_pred = torch.argmax(dino_pred[:, 360:360+180], dim=-1).to(torch.float32)
37
- gaus_ro_pred = torch.argmax(dino_pred[:, 360+180:360+180+180], dim=-1).to(torch.float32)
38
 
39
  gaus_ax_pred = remove_outliers_and_average_circular(gaus_ax_pred)
40
  gaus_pl_pred = remove_outliers_and_average(gaus_pl_pred)
@@ -44,6 +44,6 @@ def get_3angle_infer_aug(origin_img, rm_bkg_img, dino, val_preprocess, device):
44
  angles = torch.zeros(4)
45
  angles[0] = gaus_ax_pred
46
  angles[1] = gaus_pl_pred - 90
47
- angles[2] = gaus_ro_pred - 90
48
  angles[3] = confidence
49
  return angles
 
14
 
15
  gaus_ax_pred = torch.argmax(dino_pred[:, 0:360], dim=-1)
16
  gaus_pl_pred = torch.argmax(dino_pred[:, 360:360+180], dim=-1)
17
+ gaus_ro_pred = torch.argmax(dino_pred[:, 360+180:360+180+360], dim=-1)
18
  confidence = F.softmax(dino_pred[:, -2:], dim=-1)[0][0]
19
  angles = torch.zeros(4)
20
  angles[0] = gaus_ax_pred
21
  angles[1] = gaus_pl_pred - 90
22
+ angles[2] = gaus_ro_pred - 180
23
  angles[3] = confidence
24
  return angles
25
 
 
34
 
35
  gaus_ax_pred = torch.argmax(dino_pred[:, 0:360], dim=-1).to(torch.float32)
36
  gaus_pl_pred = torch.argmax(dino_pred[:, 360:360+180], dim=-1).to(torch.float32)
37
+ gaus_ro_pred = torch.argmax(dino_pred[:, 360+180:360+180+360], dim=-1).to(torch.float32)
38
 
39
  gaus_ax_pred = remove_outliers_and_average_circular(gaus_ax_pred)
40
  gaus_pl_pred = remove_outliers_and_average(gaus_pl_pred)
 
44
  angles = torch.zeros(4)
45
  angles[0] = gaus_ax_pred
46
  angles[1] = gaus_pl_pred - 90
47
+ angles[2] = gaus_ro_pred - 180
48
  angles[3] = confidence
49
  return angles