import speech_recognition as sr from pydub import AudioSegment import gradio as gr from os import path import requests import openai from openai import OpenAI prompt = "Type and press Enter" def record_text(audio_file,api_key): client = OpenAI(api_key = api_key) input_file = audio_file output_file = "converted_sound.mp3" sound = AudioSegment.from_wav(input_file) sound.export(output_file, format="mp3") audio_file = "converted_sound.mp3" audio_file = open(audio_file, "rb") transcript = client.audio.transcriptions.create( model="whisper-1", file=audio_file, response_format="text" ) return transcript # return(str(path.getsize(audio_file)/1000000)+'mb') # sound = audio_file # sound_type = sound.split(".") # if sound_type[-1] == 'mp3': # input_file = sound # output_file = "con_sound.wav" # # convert mp3 file to wav file # sound = AudioSegment.from_mp3(input_file) # sound.export(output_file, format="wav") # sound = "con_sound.wav" # MyText = "" # with sr.AudioFile(sound) as source: # r.adjust_for_ambient_noise(source) # print("Converting audio file to text..") # audio2 = r.record(source, duration=None) # Use record instead of listen # MyText = r.recognize_google(audio2, language="en-US", key=None, show_all=False) # MyText = MyText.lower() # return (MyText) def api_calling(audio_file, prompt, api_key): audio_text = record_text(audio_file,api_key) if len(prompt) == 0: prompt = "Apply proper punctuations, upper case and lower case to the provided text." return audio_text else: headers = { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}" } payload = { "model": "gpt-3.5-turbo", "messages": [ { "role": "user", "content": [ { "type": "text", "text": prompt }, { "type": "text", "text": audio_text } ] } ], "max_tokens": 1000 } response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) audio_text_res = response.json() return audio_text_res["choices"][0]["message"]["content"] def message_and_history(audio_text,input, history, api_key): history = history or [] output_text = api_calling(audio_text,input,api_key) if len(input) == 0: input = "Speech from the video." history.append((input, output_text)) else: history.append((input, output_text)) return history, history block = gr.Blocks(theme=gr.themes.Monochrome(primary_hue="slate")) with block: gr.Markdown("""