SkinDeep / app.py
Vijish's picture
Update app.py
772748f
raw
history blame
3.23 kB
import streamlit as st
import urllib.request
import PIL.Image
from PIL import Image
import requests
import fastai
from fastai.vision import *
from fastai.utils.mem import *
from fastai.vision import open_image, load_learner, image, torch
import numpy as np
from urllib.request import urlretrieve
from io import BytesIO
import numpy as np
import torchvision.transforms as T
from PIL import Image,ImageOps,ImageFilter
from io import BytesIO
import os
class FeatureLoss(nn.Module):
def __init__(self, m_feat, layer_ids, layer_wgts):
super().__init__()
self.m_feat = m_feat
self.loss_features = [self.m_feat[i] for i in layer_ids]
self.hooks = hook_outputs(self.loss_features, detach=False)
self.wgts = layer_wgts
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))
] + [f'gram_{i}' for i in range(len(layer_ids))]
def make_features(self, x, clone=False):
self.m_feat(x)
return [(o.clone() if clone else o) for o in self.hooks.stored]
def forward(self, input, target):
out_feat = self.make_features(target, clone=True)
in_feat = self.make_features(input)
self.feat_losses = [base_loss(input,target)]
self.feat_losses += [base_loss(f_in, f_out)*w
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
self.metrics = dict(zip(self.metric_names, self.feat_losses))
return sum(self.feat_losses)
def __del__(self): self.hooks.remove()
MODEL_URL = "https://www.dropbox.com/s/vxgw0s7ktpla4dk/SkinDeep2.pkl?dl=1"
urlretrieve(MODEL_URL, "SkinDeep2.pkl")
path = Path(".")
learn = load_learner(path, 'SkinDeep2.pkl')
def predict(image):
img_fast = open_image(image)
a = PIL.Image.open(image).convert('RGB')
st.image(a, caption='Input')
p,img_hr,b = learn.predict(img_fast)
x = np.minimum(np.maximum(image2np(img_hr.data*255), 0), 255).astype(np.uint8)
img = PIL.Image.fromarray(x).convert('RGB')
return st.image(img, caption='Tattoo')
SIDEBAR_OPTION_DEMO_IMAGE = "Select a Demo Image"
SIDEBAR_OPTION_UPLOAD_IMAGE = "Upload an Image"
SIDEBAR_OPTIONS = [SIDEBAR_OPTION_DEMO_IMAGE, SIDEBAR_OPTION_UPLOAD_IMAGE]
app_mode = st.sidebar.selectbox("Please select from the following", SIDEBAR_OPTIONS)
photos = ["tatoo.jpg","tattoo2.jpg"]
if app_mode == SIDEBAR_OPTION_DEMO_IMAGE:
st.sidebar.write(" ------ ")
option = st.sidebar.selectbox('Please select a sample image and then click PoP button', photos)
pressed = st.sidebar.button('Predict')
if pressed:
st.empty()
st.sidebar.write('Please wait for the magic to happen! This may take up to a minute.')
predict(option)
elif app_mode == SIDEBAR_OPTION_UPLOAD_IMAGE:
uploaded_file = st.file_uploader("Choose an image...")
if uploaded_file is not None:
pressed = st.sidebar.button('Predict')
if pressed:
st.empty()
st.sidebar.write('Please wait for the magic to happen! This may take up to a minute.')
predict(uploaded_file)