Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import urllib.request
|
3 |
+
import PIL.Image
|
4 |
+
from PIL import Image
|
5 |
+
import requests
|
6 |
+
import fastai
|
7 |
+
from fastai.vision import *
|
8 |
+
from fastai.utils.mem import *
|
9 |
+
from fastai.vision import open_image, load_learner, image, torch
|
10 |
+
import numpy as np
|
11 |
+
from urllib.request import urlretrieve
|
12 |
+
from io import BytesIO
|
13 |
+
import numpy as np
|
14 |
+
import torchvision.transforms as T
|
15 |
+
from PIL import Image,ImageOps,ImageFilter
|
16 |
+
from io import BytesIO
|
17 |
+
import os
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
class FeatureLoss(nn.Module):
|
22 |
+
def __init__(self, m_feat, layer_ids, layer_wgts):
|
23 |
+
super().__init__()
|
24 |
+
self.m_feat = m_feat
|
25 |
+
self.loss_features = [self.m_feat[i] for i in layer_ids]
|
26 |
+
self.hooks = hook_outputs(self.loss_features, detach=False)
|
27 |
+
self.wgts = layer_wgts
|
28 |
+
self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))
|
29 |
+
] + [f'gram_{i}' for i in range(len(layer_ids))]
|
30 |
+
|
31 |
+
def make_features(self, x, clone=False):
|
32 |
+
self.m_feat(x)
|
33 |
+
return [(o.clone() if clone else o) for o in self.hooks.stored]
|
34 |
+
|
35 |
+
def forward(self, input, target):
|
36 |
+
out_feat = self.make_features(target, clone=True)
|
37 |
+
in_feat = self.make_features(input)
|
38 |
+
self.feat_losses = [base_loss(input,target)]
|
39 |
+
self.feat_losses += [base_loss(f_in, f_out)*w
|
40 |
+
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
|
41 |
+
self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
|
42 |
+
for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
|
43 |
+
self.metrics = dict(zip(self.metric_names, self.feat_losses))
|
44 |
+
return sum(self.feat_losses)
|
45 |
+
|
46 |
+
def __del__(self): self.hooks.remove()
|
47 |
+
|
48 |
+
|
49 |
+
MODEL_URL = "https://www.dropbox.com/s/vxgw0s7ktpla4dk/SkinDeep2.pkl?dl=1"
|
50 |
+
urlretrieve(MODEL_URL, "SkinDeep2.pkl")
|
51 |
+
path = Path(".")
|
52 |
+
learn = load_learner(path, 'SkinDeep2.pkl')
|
53 |
+
|
54 |
+
|
55 |
+
def predict(image):
|
56 |
+
img_fast = open_image(image)
|
57 |
+
a = PIL.Image.open(image).convert('RGB')
|
58 |
+
st.image(a, caption='Input')
|
59 |
+
p,img_hr,b = learn.predict(img_fast)
|
60 |
+
x = np.minimum(np.maximum(image2np(img_hr.data*255), 0), 255).astype(np.uint8)
|
61 |
+
img = PIL.Image.fromarray(x).convert('RGB')
|
62 |
+
return st.image(img, caption='Tattoo')
|
63 |
+
|
64 |
+
|
65 |
+
SIDEBAR_OPTION_DEMO_IMAGE = "Select a Demo Image"
|
66 |
+
SIDEBAR_OPTION_UPLOAD_IMAGE = "Upload an Image"
|
67 |
+
|
68 |
+
SIDEBAR_OPTIONS = [SIDEBAR_OPTION_DEMO_IMAGE, SIDEBAR_OPTION_UPLOAD_IMAGE]
|
69 |
+
|
70 |
+
app_mode = st.sidebar.selectbox("Please select from the following", SIDEBAR_OPTIONS)
|
71 |
+
photos = ["fight.jpg","shaolin-kung-fu.jpg","unnamed.jpg","michael-jackson.png"]
|
72 |
+
|
73 |
+
if app_mode == SIDEBAR_OPTION_DEMO_IMAGE:
|
74 |
+
st.sidebar.write(" ------ ")
|
75 |
+
option = st.sidebar.selectbox('Please select a sample image and then click PoP button', photos)
|
76 |
+
pressed = st.sidebar.button('PoP')
|
77 |
+
if pressed:
|
78 |
+
st.empty()
|
79 |
+
st.sidebar.write('Please wait for the magic to happen! This may take up to a minute.')
|
80 |
+
predict(option)
|
81 |
+
|
82 |
+
|
83 |
+
elif app_mode == SIDEBAR_OPTION_UPLOAD_IMAGE:
|
84 |
+
uploaded_file = st.file_uploader("Choose an image...")
|
85 |
+
if uploaded_file is not None:
|
86 |
+
pressed = st.sidebar.button('PoP')
|
87 |
+
if pressed:
|
88 |
+
st.empty()
|
89 |
+
st.sidebar.write('Please wait for the magic to happen! This may take up to a minute.')
|
90 |
+
predict(uploaded_file)
|