Vijish commited on
Commit
faaa6c1
·
1 Parent(s): 53b1d9c

Create new file

Browse files
Files changed (1) hide show
  1. app.py +66 -0
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image
3
+ import requests
4
+ import numpy as np
5
+ import urllib.request
6
+ from urllib.request import urlretrieve
7
+ import PIL.Image
8
+ import torchvision.transforms as T
9
+ import fastai
10
+ from fastai.vision import *
11
+ from fastai.utils.mem import *
12
+
13
+ class FeatureLoss(nn.Module):
14
+ def __init__(self, m_feat, layer_ids, layer_wgts):
15
+ super().__init__()
16
+ self.m_feat = m_feat
17
+ self.loss_features = [self.m_feat[i] for i in layer_ids]
18
+ self.hooks = hook_outputs(self.loss_features, detach=False)
19
+ self.wgts = layer_wgts
20
+ self.metric_names = ['pixel',] + [f'feat_{i}' for i in range(len(layer_ids))
21
+ ] + [f'gram_{i}' for i in range(len(layer_ids))]
22
+
23
+ def make_features(self, x, clone=False):
24
+ self.m_feat(x)
25
+ return [(o.clone() if clone else o) for o in self.hooks.stored]
26
+
27
+ def forward(self, input, target):
28
+ out_feat = self.make_features(target, clone=True)
29
+ in_feat = self.make_features(input)
30
+ self.feat_losses = [base_loss(input,target)]
31
+ self.feat_losses += [base_loss(f_in, f_out)*w
32
+ for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
33
+ self.feat_losses += [base_loss(gram_matrix(f_in), gram_matrix(f_out))*w**2 * 5e3
34
+ for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
35
+ self.metrics = dict(zip(self.metric_names, self.feat_losses))
36
+ return sum(self.feat_losses)
37
+
38
+ def __del__(self): self.hooks.remove()
39
+
40
+ MODEL_URL = "https://www.dropbox.com/s/rz9nt35um1agf5y/t10T.pkl?dl=1"
41
+ urllib.request.urlretrieve(MODEL_URL, "t10T.pkl")
42
+ path = Path(".")
43
+ learn=load_learner(path, 't10T.pkl')
44
+
45
+ urlretrieve("https://s.hdnux.com/photos/01/07/33/71/18726490/5/1200x0.jpg","soccer1.jpg")
46
+ urlretrieve("https://media.okmagazine.com/brand-img/IEPXUdkY7/0x0/2015/06/celebrity-tattoos-16-splash.jpg","soccer2.jpg")
47
+ urlretrieve("https://newsmeter.in/wp-content/uploads/2020/06/Ajay-Devgn-Tattoo.jpg","baseball.jpg")
48
+ urlretrieve("https://www.allkpop.com/upload/2022/08/content/071400/1659895247-tattoozico.jpg","baseball2.jpeg")
49
+
50
+ sample_images = [["soccer1.jpg"],
51
+ ["soccer2.jpg"],
52
+ ["baseball.jpg"],
53
+ ["baseball2.jpeg"]]
54
+
55
+
56
+ def predict(input):
57
+ size = input.size
58
+ img_t = T.ToTensor()(input)
59
+ img_fast = Image(img_t)
60
+ p,img_hr,b = learn.predict(img_fast)
61
+ x = np.minimum(np.maximum(image2np(img_hr.data*255), 0), 255).astype(np.uint8)
62
+ img = PIL.Image.fromarray(x)
63
+ im1 = img.resize(size)
64
+ return im1
65
+
66
+ gr_interface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="image", title='Skin-Deep',examples=sample_images).launch();