File size: 4,684 Bytes
7199111
 
8ecf185
7199111
 
 
 
 
8ecf185
3fac891
1419912
3fac891
 
8ecf185
7199111
15b834a
8ecf185
 
3fac891
3657998
3fac891
3657998
8ecf185
 
6a111e1
7199111
 
 
 
3657998
7199111
 
 
3657998
7199111
 
3657998
7199111
 
3657998
7199111
 
17aa4ec
7199111
 
bbcce29
7199111
bbcce29
7199111
8510d34
7199111
 
 
bbcce29
7199111
 
 
9eb9696
7199111
cad92ea
b881cfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98b16e3
0304d96
 
 
7199111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbcce29
7199111
 
 
8ecf185
9d9428d
bbcce29
 
7199111
 
9eb9696
bbcce29
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from flask import *
from PIL import Image

import face_recognition
import cv2
import numpy as np
import csv
from datetime import datetime

############################################
import matplotlib.pyplot as plt
import pylab # this allows you to control figure size 
pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook

import io
import streamlit as st


##################################################3

app = Flask(__name__)



@app.route('/at')
def attend():
    # Face recognition variables
    known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"]
    known_face_encodings = []

    # Load known face encodings
    sir_image = face_recognition.load_image_file("photos/sir.jpeg")
    sir_encoding = face_recognition.face_encodings(sir_image)[0]

    vikas_image = face_recognition.load_image_file("photos/vikas.jpg")
    vikas_encoding = face_recognition.face_encodings(vikas_image)[0]

    lalit_image = face_recognition.load_image_file("photos/lalit.jpg")
    lalit_encoding = face_recognition.face_encodings(lalit_image)[0]

    jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg")
    jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0]

    maam_image = face_recognition.load_image_file("photos/maam.png")
    maam_encoding = face_recognition.face_encodings(maam_image)[0]

    known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding]

    students = known_faces_names.copy()

    face_locations = []
    face_encodings = []
    face_names = []

    now = datetime.now()
    current_date = now.strftime("%Y-%m-%d")
    csv_file = open(f"{current_date}.csv", "a+", newline="")
    
    csv_writer = csv.writer(csv_file)

    # Function to run face recognition
    def run_face_recognition():
        video_capture = cv2.VideoCapture(0)
        s = True

        existing_names = set(row[0] for row in csv.reader(csv_file))  # Collect existing names from the CSV file   
        

        while s:
            _, frame = video_capture.read()
            small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
            rgb_small_frame = small_frame[:, :, ::-1]
            
            face_locations = face_recognition.face_locations(rgb_small_frame)
            face_encodings = face_recognition.face_encodings(small_frame, face_locations)
            face_names = []

            for face_encoding in face_encodings:
                matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                name = ""
                face_distance = face_recognition.face_distance(known_face_encodings, face_encoding)
                best_match_index = np.argmin(face_distance)
                if matches[best_match_index]:
                    name = known_faces_names[best_match_index]

                face_names.append(name)

               
                for name in face_names:
                    if name in known_faces_names and name in students and name not in existing_names:
                        students.remove(name)
                        print(students)
                        print(f"Attendance recorded for {name}")
                        current_time = now.strftime("%H-%M-%S")
                        csv_writer.writerow([name, current_time, "Present"])
                        existing_names.add(name)  # Add the name to the set of existing names
                        
                        s = False  # Set s to False to exit the loop after recording attendance
                        break  # Break the loop once attendance has been recorded for a name

            cv2.imshow("Attendance System", frame)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break

        video_capture.release()
        cv2.destroyAllWindows()
        csv_file.close()

    # Call the function to run face recognition
    run_face_recognition()

    return redirect(url_for('show_table'))



   

@app.route('/table')
def show_table():
    # Get the current date
    current_date = datetime.now().strftime("%Y-%m-%d")
    # Read the CSV file to get attendance data
    attendance=[]
    try:
        with open(f"{current_date}.csv", newline="") as csv_file:
            csv_reader = csv.reader(csv_file)
            attendance = list(csv_reader)
    except FileNotFoundError:
        pass
    # Render the table.html template and pass the attendance data
    return render_template('attendance.html', attendance=attendance)

@app.route("/")
def home():
    return render_template('index.html')

   


if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860)