File size: 5,354 Bytes
7199111
 
8ecf185
7199111
 
 
 
 
8ecf185
7199111
 
 
8ecf185
7199111
 
8ecf185
 
 
 
 
 
 
7199111
8ecf185
 
7199111
 
 
 
3657998
 
8ecf185
 
 
 
 
 
 
 
 
 
7199111
 
 
 
 
 
3657998
7199111
 
 
3657998
7199111
 
3657998
7199111
 
3657998
7199111
 
17aa4ec
7199111
 
bbcce29
7199111
bbcce29
7199111
8510d34
7199111
 
 
bbcce29
7199111
 
 
9eb9696
7199111
cad92ea
7199111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cad92ea
 
7199111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbcce29
7199111
 
 
8ecf185
9d9428d
bbcce29
 
7199111
 
9eb9696
bbcce29
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from flask import *
from PIL import Image

import face_recognition
import cv2
import numpy as np
import csv
from datetime import datetime

from matplotlib import pyplot as plt # this lets you draw inline pictures in the notebooks
import pylab # this allows you to control figure size 
pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook

import io
import streamlit as st







app = Flask(__name__)


# @app.route("/")
# def index():
#     #return 'hello'
#     return render_template("index.html")


####################################################
# app = Flask(__name__)

# app.config['SECRET_KEY'] = 'secret!'
# socket = SocketIO(app,async_mode="eventlet")

# @socket.on("connect")
# def test_connect():
#     print("Connected")
#     emit("my response", {"data": "Connected"})
########################################################    
@app.route('/at')
def attend():
    # Face recognition variables
    known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"]
    known_face_encodings = []

    # Load known face encodings
    sir_image = face_recognition.load_image_file("photos/sir.jpeg")
    sir_encoding = face_recognition.face_encodings(sir_image)[0]

    vikas_image = face_recognition.load_image_file("photos/vikas.jpg")
    vikas_encoding = face_recognition.face_encodings(vikas_image)[0]

    lalit_image = face_recognition.load_image_file("photos/lalit.jpg")
    lalit_encoding = face_recognition.face_encodings(lalit_image)[0]

    jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg")
    jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0]

    maam_image = face_recognition.load_image_file("photos/maam.png")
    maam_encoding = face_recognition.face_encodings(maam_image)[0]

    known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding]

    students = known_faces_names.copy()

    face_locations = []
    face_encodings = []
    face_names = []

    now = datetime.now()
    current_date = now.strftime("%Y-%m-%d")
    csv_file = open(f"{current_date}.csv", "a+", newline="")
    
    csv_writer = csv.writer(csv_file)

    bytes_data=None
    def run_face_recognition():
        img_file_buffer=st.camera_input("Take a picture")
        if img_file_buffer is not None:
            
            s = True
    
            existing_names = set(row[0] for row in csv.reader(csv_file))  # Collect existing names from the CSV file   
            
    
            while s:
                _, frame = img_file_buffer.read()
                small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
                rgb_small_frame = small_frame[:, :, ::-1]
                
                face_locations = face_recognition.face_locations(rgb_small_frame)
                face_encodings = face_recognition.face_encodings(small_frame, face_locations)
                face_names = []
    
                for face_encoding in face_encodings:
                    matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
                    name = ""
                    face_distance = face_recognition.face_distance(known_face_encodings, face_encoding)
                    best_match_index = np.argmin(face_distance)
                    if matches[best_match_index]:
                        name = known_faces_names[best_match_index]
    
                    face_names.append(name)
    
                   
                    for name in face_names:
                        if name in known_faces_names and name in students and name not in existing_names:
                            students.remove(name)
                            print(students)
                            print(f"Attendance recorded for {name}")
                            current_time = now.strftime("%H-%M-%S")
                            csv_writer.writerow([name, current_time, "Present"])
                            existing_names.add(name)  # Add the name to the set of existing names
                            
                            s = False  # Set s to False to exit the loop after recording attendance
                            break  # Break the loop once attendance has been recorded for a name
    
                cv2.imshow("Attendance System", frame)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        if bytes_data is None:
            st.stop()
#         video_capture.release()
#         cv2.destroyAllWindows()
        csv_file.close()

    # Call the function to run face recognition
    run_face_recognition()

    return redirect(url_for('show_table'))

@app.route('/table')
def show_table():
    # Get the current date
    current_date = datetime.now().strftime("%Y-%m-%d")
    # Read the CSV file to get attendance data
    attendance=[]
    try:
        with open(f"{current_date}.csv", newline="") as csv_file:
            csv_reader = csv.reader(csv_file)
            attendance = list(csv_reader)
    except FileNotFoundError:
        pass
    # Render the table.html template and pass the attendance data
    return render_template('attendance.html', attendance=attendance)

@app.route("/")
def home():
    return render_template('index.html')

   


if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860)