Spaces:
Runtime error
Runtime error
File size: 5,163 Bytes
7199111 8ecf185 7199111 8ecf185 1419912 65daba4 8ecf185 7199111 15b834a 0bdb722 8ecf185 7199111 8ecf185 7199111 3657998 8ecf185 7199111 ca8c9ca 7199111 3657998 7199111 3657998 7199111 3657998 7199111 3657998 7199111 17aa4ec 7199111 bbcce29 7199111 bbcce29 7199111 8510d34 7199111 bbcce29 7199111 9eb9696 7199111 cad92ea b881cfe 98b16e3 0304d96 7199111 bbcce29 7199111 8ecf185 9d9428d bbcce29 7199111 9eb9696 bbcce29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
from flask import *
from PIL import Image
import face_recognition
import cv2
import numpy as np
import csv
from datetime import datetime
import matplotlib.pyplot as plt
# from matplotlib import pyplot as plt # this lets you draw inline pictures in the notebooks
# import pylab # this allows you to control figure size
# pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook
import io
import streamlit as st
import streamlit_webrtc as webrtc
app = Flask(__name__)
# @app.route("/")
# def index():
# #return 'hello'
# return render_template("index.html")
####################################################
# app = Flask(__name__)
# app.config['SECRET_KEY'] = 'secret!'
# socket = SocketIO(app,async_mode="eventlet")
# @socket.on("connect")
# def test_connect():
# print("Connected")
# emit("my response", {"data": "Connected"})
########################################################
@app.route('/att')
def attend():
# Face recognition variables
known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"]
known_face_encodings = []
# Load known face encodings
sir_image = face_recognition.load_image_file("photos/sir.jpeg")
sir_encoding = face_recognition.face_encodings(sir_image)[0]
vikas_image = face_recognition.load_image_file("photos/vikas.jpg")
vikas_encoding = face_recognition.face_encodings(vikas_image)[0]
lalit_image = face_recognition.load_image_file("photos/lalit.jpg")
lalit_encoding = face_recognition.face_encodings(lalit_image)[0]
jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg")
jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0]
maam_image = face_recognition.load_image_file("photos/maam.png")
maam_encoding = face_recognition.face_encodings(maam_image)[0]
known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding]
students = known_faces_names.copy()
face_locations = []
face_encodings = []
face_names = []
now = datetime.now()
current_date = now.strftime("%Y-%m-%d")
csv_file = open(f"{current_date}.csv", "a+", newline="")
csv_writer = csv.writer(csv_file)
# Function to run face recognition
def run_face_recognition():
video_capture = cv2.VideoCapture(0)
s = True
existing_names = set(row[0] for row in csv.reader(csv_file)) # Collect existing names from the CSV file
while s:
_, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = ""
face_distance = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distance)
if matches[best_match_index]:
name = known_faces_names[best_match_index]
face_names.append(name)
for name in face_names:
if name in known_faces_names and name in students and name not in existing_names:
students.remove(name)
print(students)
print(f"Attendance recorded for {name}")
current_time = now.strftime("%H-%M-%S")
csv_writer.writerow([name, current_time, "Present"])
existing_names.add(name) # Add the name to the set of existing names
s = False # Set s to False to exit the loop after recording attendance
break # Break the loop once attendance has been recorded for a name
cv2.imshow("Attendance System", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
csv_file.close()
# Call the function to run face recognition
run_face_recognition()
return redirect(url_for('show_table'))
@app.route('/table')
def show_table():
# Get the current date
current_date = datetime.now().strftime("%Y-%m-%d")
# Read the CSV file to get attendance data
attendance=[]
try:
with open(f"{current_date}.csv", newline="") as csv_file:
csv_reader = csv.reader(csv_file)
attendance = list(csv_reader)
except FileNotFoundError:
pass
# Render the table.html template and pass the attendance data
return render_template('attendance.html', attendance=attendance)
@app.route("/")
def home():
return render_template('index.html')
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)
|