Spaces:
Runtime error
Runtime error
import face_recognition | |
import cv2 | |
import numpy as np | |
import csv | |
from datetime import datetime | |
from flask import Flask,render_template | |
from flask_socketio import SocketIO,emit | |
import base64 | |
app = Flask(__name__) | |
app.config['SECRET_KEY'] = 'secret!' | |
socket = SocketIO(app,async_mode="eventlet") | |
################################### | |
video_capture=cv2.VideoCapture(1) | |
if not video_capture.isOpened(): | |
print("Failed to open the video capture.") | |
exit() | |
sir_image=face_recognition.load_image_file("photos/sir.jpeg") | |
sir_encoding=face_recognition.face_encodings(sir_image)[0] | |
vikas_image=face_recognition.load_image_file("photos/vikas.jpg") | |
vikas_encoding=face_recognition.face_encodings(vikas_image)[0] | |
known_face_encoding=[sir_encoding,vikas_encoding] | |
known_faces_names=["Sarwan Sir","Vikas"] | |
students=known_faces_names.copy() | |
face_locations=[] | |
face_encodings=[] | |
face_names=[] | |
s=True | |
now=datetime.now() | |
current_date=now.strftime("%Y-%m-%d") | |
f=open(current_date+'.csv','w+',newline='') | |
lnwriter=csv.writer(f) | |
############################ | |
def base64_to_image(base64_string): | |
# Extract the base64 encoded binary data from the input string | |
base64_data = base64_string.split(",")[1] | |
# Decode the base64 data to bytes | |
image_bytes = base64.b64decode(base64_data) | |
# Convert the bytes to numpy array | |
image_array = np.frombuffer(image_bytes, dtype=np.uint8) | |
# Decode the numpy array as an image using OpenCV | |
image = cv2.imdecode(image_array, cv2.IMREAD_COLOR) | |
return image | |
def test_connect(): | |
print("Connected") | |
emit("my response", {"data": "Connected"}) | |
def receive_image(image): | |
return render_template("index.html" , myimage = image , cname = class_name ) | |
while True: | |
# _,frame=camera.read() | |
frame=base64_to_image(image) | |
small_frame=cv2.resize(frame,(0,0),fx=0.25,fy=0.25) | |
rgb_small_frame=small_frame[:,:,::-1] | |
if s: | |
face_locations=face_recognition.face_locations(rgb_small_frame) | |
face_encodings = face_recognition.face_encodings(small_frame, face_locations) | |
face_names=[] | |
for face_encoding in face_encodings: | |
matches=face_recognition.compare_faces(known_face_encoding,face_encoding) | |
name="" | |
face_distance=face_recognition.face_distance(known_face_encoding,face_encoding) | |
best_match_index=np.argmin(face_distance) | |
if matches[best_match_index]: | |
name=known_faces_names[best_match_index] | |
face_names.append(name) | |
if name in known_faces_names: | |
if name in students: | |
students.remove(name) | |
print(students) | |
current_time=now.strftime("%H-%M-%S") | |
lnwriter.writerow([name,current_time,"Present"]) | |
cv2.imshow("attendence system",frame) | |
if cv2.waitKey(1) & 0xFF==ord('q'): | |
break | |
f.close() | |
####################################### | |
def home(): | |
return render_template("index.html") | |
if __name__ == '__main__': | |
# app.run(debug=True) | |
socket.run(app,host="0.0.0.0", port=7860) | |
####################################### |