Vikas01 commited on
Commit
42f8f3e
·
1 Parent(s): 81c59b6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -122
app.py CHANGED
@@ -12,9 +12,9 @@ import matplotlib.pyplot as plt
12
  import pylab # this allows you to control figure size
13
  pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook
14
 
15
- # import io
16
- # import streamlit as st
17
- # bytes_data=None
18
 
19
  ##################################################3
20
 
@@ -25,21 +25,21 @@ import gradio as gr
25
 
26
  app = Flask(__name__)
27
 
28
- # flag1 = True
29
 
30
- # @app.route('/at')
31
- # def testme():
32
- # global flag1
33
- # # return "i am in testme"
34
- # while flag1 is True:
35
 
36
- # img_file_buffer=st.camera_input("Take a picture")
37
- # if img_file_buffer is not None:
38
- # test_image = Image.open(img_file_buffer)
39
- # st.image(test_image, use_column_width=True)
40
- # if bytes_data is None:
41
- # flag1 = False
42
- # st.stop()
43
 
44
  # def attend():
45
  # # Face recognition variables
@@ -128,114 +128,8 @@ app = Flask(__name__)
128
  # run_face_recognition()
129
 
130
  # return redirect(url_for('show_table'))
131
- ##########################################################################
132
- def snap(image,video):
133
- return [image,video]
134
-
135
-
136
- # @app.route('/at')
137
- # def attend():
138
- # # Face recognition variables
139
- # known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"]
140
- # known_face_encodings = []
141
-
142
- # # Load known face encodings
143
- # sir_image = face_recognition.load_image_file("photos/sir.jpeg")
144
- # sir_encoding = face_recognition.face_encodings(sir_image)[0]
145
-
146
- # vikas_image = face_recognition.load_image_file("photos/vikas.jpg")
147
- # vikas_encoding = face_recognition.face_encodings(vikas_image)[0]
148
-
149
- # lalit_image = face_recognition.load_image_file("photos/lalit.jpg")
150
- # lalit_encoding = face_recognition.face_encodings(lalit_image)[0]
151
-
152
- # jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg")
153
- # jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0]
154
-
155
- # maam_image = face_recognition.load_image_file("photos/maam.png")
156
- # maam_encoding = face_recognition.face_encodings(maam_image)[0]
157
 
158
- # known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding]
159
 
160
- # students = known_faces_names.copy()
161
-
162
- # face_locations = []
163
- # face_encodings = []
164
- # face_names = []
165
-
166
- # now = datetime.now()
167
- # current_date = now.strftime("%Y-%m-%d")
168
- # csv_file = open(f"{current_date}.csv", "a+", newline="")
169
-
170
- # csv_writer = csv.writer(csv_file)
171
-
172
-
173
- # # Function to run face recognition
174
- # def run_face_recognition():
175
- # video_capture = cv2.VideoCapture(0)
176
- # s = True
177
-
178
- # existing_names = set(row[0] for row in csv.reader(csv_file)) # Collect existing names from the CSV file
179
-
180
-
181
- # while s:
182
- # _, frame = video_capture.read()
183
- # small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
184
- # rgb_small_frame = small_frame[:, :, ::-1]
185
-
186
- # face_locations = face_recognition.face_locations(rgb_small_frame)
187
- # face_encodings = face_recognition.face_encodings(small_frame, face_locations)
188
- # face_names = []
189
-
190
- # for face_encoding in face_encodings:
191
- # matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
192
- # name = ""
193
- # face_distance = face_recognition.face_distance(known_face_encodings, face_encoding)
194
- # best_match_index = np.argmin(face_distance)
195
- # if matches[best_match_index]:
196
- # name = known_faces_names[best_match_index]
197
-
198
- # face_names.append(name)
199
-
200
-
201
- # for name in face_names:
202
- # if name in known_faces_names and name in students and name not in existing_names:
203
- # students.remove(name)
204
- # print(students)
205
- # print(f"Attendance recorded for {name}")
206
- # current_time = now.strftime("%H-%M-%S")
207
- # csv_writer.writerow([name, current_time, "Present"])
208
- # existing_names.add(name) # Add the name to the set of existing names
209
-
210
- # s = False # Set s to False to exit the loop after recording attendance
211
- # break # Break the loop once attendance has been recorded for a name
212
-
213
- # cv2.imshow("Attendance System", frame)
214
- # if cv2.waitKey(1) & 0xFF == ord('q'):
215
- # break
216
-
217
- # video_capture.release()
218
- # cv2.destroyAllWindows()
219
- # csv_file.close()
220
-
221
- # # Call the function to run face recognition
222
- # run_face_recognition()
223
-
224
- # return redirect(url_for('show_table'))
225
-
226
- def gradio_interface():
227
- demo = gr.Interface(
228
- snap,
229
- [gr.Image(source="webcam", tool=None), gr.Video(source="webcam")],
230
- ["image", "video"],
231
- )
232
- return demo
233
-
234
-
235
- @app.route('/at')
236
- def gradio():
237
- interface = gradio_interface()
238
- return interface.launch()
239
 
240
  ###########################################################################
241
  @app.route('/table')
 
12
  import pylab # this allows you to control figure size
13
  pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook
14
 
15
+ import io
16
+ import streamlit as st
17
+ bytes_data=None
18
 
19
  ##################################################3
20
 
 
25
 
26
  app = Flask(__name__)
27
 
28
+ flag1 = True
29
 
30
+ @app.route('/at')
31
+ def testme():
32
+ global flag1
33
+ # return "i am in testme"
34
+ while flag1 is True:
35
 
36
+ img_file_buffer=st.camera_input("Take a picture")
37
+ if img_file_buffer is not None:
38
+ test_image = Image.open(img_file_buffer)
39
+ st.image(test_image, use_column_width=True)
40
+ if bytes_data is None:
41
+ flag1 = False
42
+ st.stop()
43
 
44
  # def attend():
45
  # # Face recognition variables
 
128
  # run_face_recognition()
129
 
130
  # return redirect(url_for('show_table'))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
 
132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
134
  ###########################################################################
135
  @app.route('/table')