Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,9 +12,9 @@ import matplotlib.pyplot as plt
|
|
12 |
import pylab # this allows you to control figure size
|
13 |
pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
19 |
##################################################3
|
20 |
|
@@ -25,21 +25,21 @@ import gradio as gr
|
|
25 |
|
26 |
app = Flask(__name__)
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
#
|
34 |
-
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
|
44 |
# def attend():
|
45 |
# # Face recognition variables
|
@@ -128,114 +128,8 @@ app = Flask(__name__)
|
|
128 |
# run_face_recognition()
|
129 |
|
130 |
# return redirect(url_for('show_table'))
|
131 |
-
##########################################################################
|
132 |
-
def snap(image,video):
|
133 |
-
return [image,video]
|
134 |
-
|
135 |
-
|
136 |
-
# @app.route('/at')
|
137 |
-
# def attend():
|
138 |
-
# # Face recognition variables
|
139 |
-
# known_faces_names = ["Sarwan Sir", "Vikas","Lalit","Jasmeen","Anita Ma'am"]
|
140 |
-
# known_face_encodings = []
|
141 |
-
|
142 |
-
# # Load known face encodings
|
143 |
-
# sir_image = face_recognition.load_image_file("photos/sir.jpeg")
|
144 |
-
# sir_encoding = face_recognition.face_encodings(sir_image)[0]
|
145 |
-
|
146 |
-
# vikas_image = face_recognition.load_image_file("photos/vikas.jpg")
|
147 |
-
# vikas_encoding = face_recognition.face_encodings(vikas_image)[0]
|
148 |
-
|
149 |
-
# lalit_image = face_recognition.load_image_file("photos/lalit.jpg")
|
150 |
-
# lalit_encoding = face_recognition.face_encodings(lalit_image)[0]
|
151 |
-
|
152 |
-
# jasmine_image = face_recognition.load_image_file("photos/jasmine.jpg")
|
153 |
-
# jasmine_encoding = face_recognition.face_encodings(jasmine_image)[0]
|
154 |
-
|
155 |
-
# maam_image = face_recognition.load_image_file("photos/maam.png")
|
156 |
-
# maam_encoding = face_recognition.face_encodings(maam_image)[0]
|
157 |
|
158 |
-
# known_face_encodings = [sir_encoding, vikas_encoding,lalit_encoding,jasmine_encoding,maam_encoding]
|
159 |
|
160 |
-
# students = known_faces_names.copy()
|
161 |
-
|
162 |
-
# face_locations = []
|
163 |
-
# face_encodings = []
|
164 |
-
# face_names = []
|
165 |
-
|
166 |
-
# now = datetime.now()
|
167 |
-
# current_date = now.strftime("%Y-%m-%d")
|
168 |
-
# csv_file = open(f"{current_date}.csv", "a+", newline="")
|
169 |
-
|
170 |
-
# csv_writer = csv.writer(csv_file)
|
171 |
-
|
172 |
-
|
173 |
-
# # Function to run face recognition
|
174 |
-
# def run_face_recognition():
|
175 |
-
# video_capture = cv2.VideoCapture(0)
|
176 |
-
# s = True
|
177 |
-
|
178 |
-
# existing_names = set(row[0] for row in csv.reader(csv_file)) # Collect existing names from the CSV file
|
179 |
-
|
180 |
-
|
181 |
-
# while s:
|
182 |
-
# _, frame = video_capture.read()
|
183 |
-
# small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
|
184 |
-
# rgb_small_frame = small_frame[:, :, ::-1]
|
185 |
-
|
186 |
-
# face_locations = face_recognition.face_locations(rgb_small_frame)
|
187 |
-
# face_encodings = face_recognition.face_encodings(small_frame, face_locations)
|
188 |
-
# face_names = []
|
189 |
-
|
190 |
-
# for face_encoding in face_encodings:
|
191 |
-
# matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
|
192 |
-
# name = ""
|
193 |
-
# face_distance = face_recognition.face_distance(known_face_encodings, face_encoding)
|
194 |
-
# best_match_index = np.argmin(face_distance)
|
195 |
-
# if matches[best_match_index]:
|
196 |
-
# name = known_faces_names[best_match_index]
|
197 |
-
|
198 |
-
# face_names.append(name)
|
199 |
-
|
200 |
-
|
201 |
-
# for name in face_names:
|
202 |
-
# if name in known_faces_names and name in students and name not in existing_names:
|
203 |
-
# students.remove(name)
|
204 |
-
# print(students)
|
205 |
-
# print(f"Attendance recorded for {name}")
|
206 |
-
# current_time = now.strftime("%H-%M-%S")
|
207 |
-
# csv_writer.writerow([name, current_time, "Present"])
|
208 |
-
# existing_names.add(name) # Add the name to the set of existing names
|
209 |
-
|
210 |
-
# s = False # Set s to False to exit the loop after recording attendance
|
211 |
-
# break # Break the loop once attendance has been recorded for a name
|
212 |
-
|
213 |
-
# cv2.imshow("Attendance System", frame)
|
214 |
-
# if cv2.waitKey(1) & 0xFF == ord('q'):
|
215 |
-
# break
|
216 |
-
|
217 |
-
# video_capture.release()
|
218 |
-
# cv2.destroyAllWindows()
|
219 |
-
# csv_file.close()
|
220 |
-
|
221 |
-
# # Call the function to run face recognition
|
222 |
-
# run_face_recognition()
|
223 |
-
|
224 |
-
# return redirect(url_for('show_table'))
|
225 |
-
|
226 |
-
def gradio_interface():
|
227 |
-
demo = gr.Interface(
|
228 |
-
snap,
|
229 |
-
[gr.Image(source="webcam", tool=None), gr.Video(source="webcam")],
|
230 |
-
["image", "video"],
|
231 |
-
)
|
232 |
-
return demo
|
233 |
-
|
234 |
-
|
235 |
-
@app.route('/at')
|
236 |
-
def gradio():
|
237 |
-
interface = gradio_interface()
|
238 |
-
return interface.launch()
|
239 |
|
240 |
###########################################################################
|
241 |
@app.route('/table')
|
|
|
12 |
import pylab # this allows you to control figure size
|
13 |
pylab.rcParams['figure.figsize'] = (10.0, 8.0) # this controls figure size in the notebook
|
14 |
|
15 |
+
import io
|
16 |
+
import streamlit as st
|
17 |
+
bytes_data=None
|
18 |
|
19 |
##################################################3
|
20 |
|
|
|
25 |
|
26 |
app = Flask(__name__)
|
27 |
|
28 |
+
flag1 = True
|
29 |
|
30 |
+
@app.route('/at')
|
31 |
+
def testme():
|
32 |
+
global flag1
|
33 |
+
# return "i am in testme"
|
34 |
+
while flag1 is True:
|
35 |
|
36 |
+
img_file_buffer=st.camera_input("Take a picture")
|
37 |
+
if img_file_buffer is not None:
|
38 |
+
test_image = Image.open(img_file_buffer)
|
39 |
+
st.image(test_image, use_column_width=True)
|
40 |
+
if bytes_data is None:
|
41 |
+
flag1 = False
|
42 |
+
st.stop()
|
43 |
|
44 |
# def attend():
|
45 |
# # Face recognition variables
|
|
|
128 |
# run_face_recognition()
|
129 |
|
130 |
# return redirect(url_for('show_table'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
|
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
###########################################################################
|
135 |
@app.route('/table')
|