Spaces:
Running
Running
File size: 4,491 Bytes
df66f6e 2a5f9fb 0256ee3 df66f6e 314f91a 2a5f9fb 7ec1b66 2a5f9fb 976f398 2a5f9fb b47b51e 2a5f9fb 7ec1b66 0256ee3 2a5f9fb e535476 976f398 b47b51e 9d22eee 976f398 2a5f9fb 7ec1b66 2a5f9fb 7ec1b66 2a5f9fb 7ec1b66 2a5f9fb 7ec1b66 2a5f9fb 7ec1b66 2a5f9fb 7ec1b66 2a5f9fb b47b51e 2a5f9fb b47b51e 2a5f9fb 7ec1b66 b47b51e c15e77e b47b51e 2a5f9fb 976f398 2a5f9fb 7ec1b66 2a5f9fb 7ec1b66 2a5f9fb 7ec1b66 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import json
import os
from datetime import datetime, timezone
import gradio as gr
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
already_submitted_models,
# check_model_card,
# get_model_size,
# is_model_on_hub,
)
REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None
def add_new_eval(
model: str,
user_name: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
ans_file: str,
profile: gr.OAuthProfile | None
):
# if profile is None:
# return styled_error("Hub Login Required") TEMP
global REQUESTED_MODELS
global USERS_TO_SUBMISSION_DATES
if not REQUESTED_MODELS:
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
user_name = user_name
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
precision = precision.split(" ")[0]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
if model_type is None or model_type == "":
return styled_error("Please select a model type.")
# Does the model actually exist?
if revision == "":
revision = "main"
# Is the model on the hub?
# if weight_type in ["Delta", "Adapter"]:
# base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
# if not base_model_on_hub:
# return styled_error(f'Base model "{base_model}" {error}')
# if not weight_type == "Adapter":
# model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
# if not model_on_hub:
# return styled_error(f'Model "{model}" {error}')
# Is the model info correctly filled?
# try:
# model_info = API.model_info(repo_id=model, revision=revision)
# except Exception:
# return styled_error("Could not get your model information. Please fill it up properly.")
# model_size = get_model_size(model_info=model_info, precision=precision)
# Were the model card and license filled?
# try:
# license = model_info.cardData["license"]
# except Exception:
# return styled_error("Please select a license for your model")
# modelcard_OK, error_msg = check_model_card(model)
# if not modelcard_OK:
# return styled_error(error_msg)
# Seems good, creating the eval
print("Adding new eval")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
out_path_upload = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}_toeval.json"
eval_entry = {
"model": model,
"user_name": user_name,
"revision": revision,
"precision": precision,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": "",
"params": "",
"license": "",
"private": False,
"answers_file": str(out_path_upload),
}
# Check for duplicate submission
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
return styled_warning("This model has been already submitted.")
print("Creating eval file")
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
with open(out_path_upload, "w") as f:
f.write(open(ans_file).read())
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
API.upload_file(
path_or_fileobj=out_path_upload,
path_in_repo=out_path_upload.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
os.remove(out_path_upload)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
)
|