File size: 4,491 Bytes
df66f6e
 
2a5f9fb
0256ee3
df66f6e
314f91a
2a5f9fb
 
7ec1b66
 
 
2a5f9fb
 
976f398
 
2a5f9fb
 
 
b47b51e
2a5f9fb
 
 
 
7ec1b66
0256ee3
2a5f9fb
e535476
 
976f398
 
 
 
 
b47b51e
9d22eee
 
 
 
976f398
2a5f9fb
 
 
 
 
 
 
 
 
 
 
7ec1b66
 
 
 
2a5f9fb
7ec1b66
 
 
 
2a5f9fb
 
7ec1b66
 
 
 
2a5f9fb
7ec1b66
2a5f9fb
 
7ec1b66
 
 
 
2a5f9fb
7ec1b66
 
 
2a5f9fb
 
 
b47b51e
 
 
 
 
2a5f9fb
 
 
b47b51e
2a5f9fb
 
 
 
 
 
7ec1b66
 
b47b51e
c15e77e
b47b51e
2a5f9fb
 
976f398
 
 
 
2a5f9fb
 
 
 
 
7ec1b66
 
 
2a5f9fb
 
 
 
 
 
 
 
7ec1b66
 
 
 
 
 
 
2a5f9fb
 
 
7ec1b66
2a5f9fb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import json
import os
from datetime import datetime, timezone
import gradio as gr
from src.display.formatting import styled_error, styled_message, styled_warning
from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
from src.submission.check_validity import (
    already_submitted_models,
    # check_model_card,
    # get_model_size,
    # is_model_on_hub,
)

REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

def add_new_eval(
    model: str,
    user_name: str,
    revision: str,
    precision: str,
    weight_type: str,
    model_type: str,
    ans_file: str,
    profile: gr.OAuthProfile | None
):
    # if profile is None:
    #     return styled_error("Hub Login Required") TEMP
    global REQUESTED_MODELS
    global USERS_TO_SUBMISSION_DATES
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)

    user_name = user_name
    model_path = model
    if "/" in model:
        user_name = model.split("/")[0]
        model_path = model.split("/")[1]

    precision = precision.split(" ")[0]
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

    if model_type is None or model_type == "":
        return styled_error("Please select a model type.")

    # Does the model actually exist?
    if revision == "":
        revision = "main"

    # Is the model on the hub?
    # if weight_type in ["Delta", "Adapter"]:
    #     base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
    #     if not base_model_on_hub:
    #         return styled_error(f'Base model "{base_model}" {error}')

    # if not weight_type == "Adapter":
    #     model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
    #     if not model_on_hub:
    #         return styled_error(f'Model "{model}" {error}')

    # Is the model info correctly filled?
    # try:
    #     model_info = API.model_info(repo_id=model, revision=revision)
    # except Exception:
    #     return styled_error("Could not get your model information. Please fill it up properly.")

    # model_size = get_model_size(model_info=model_info, precision=precision)

    # Were the model card and license filled?
    # try:
    #     license = model_info.cardData["license"]
    # except Exception:
    #     return styled_error("Please select a license for your model")

    # modelcard_OK, error_msg = check_model_card(model)
    # if not modelcard_OK:
    #     return styled_error(error_msg)

    # Seems good, creating the eval
    print("Adding new eval")
    OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
    os.makedirs(OUT_DIR, exist_ok=True)
    out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
    out_path_upload = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}_toeval.json"


    eval_entry = {
        "model": model,
        "user_name": user_name,
        "revision": revision,
        "precision": precision,
        "weight_type": weight_type,
        "status": "PENDING",
        "submitted_time": current_time,
        "model_type": model_type,
        "likes": "",
        "params": "",
        "license": "",
        "private": False,
        "answers_file": str(out_path_upload),
    }

    # Check for duplicate submission
    if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
        return styled_warning("This model has been already submitted.")

    print("Creating eval file")

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))

    with open(out_path_upload, "w") as f:
        f.write(open(ans_file).read())

    print("Uploading eval file")
    API.upload_file(
        path_or_fileobj=out_path,
        path_in_repo=out_path.split("eval-queue/")[1],
        repo_id=QUEUE_REPO,
        repo_type="dataset",
        commit_message=f"Add {model} to eval queue",
    )
    API.upload_file(
        path_or_fileobj=out_path_upload,
        path_in_repo=out_path_upload.split("eval-queue/")[1],
        repo_id=QUEUE_REPO,
        repo_type="dataset",
        commit_message=f"Add {model} to eval queue",
    )

    # Remove the local file
    os.remove(out_path)
    os.remove(out_path_upload)

    return styled_message(
        "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
    )